Journal of Nanoparticle Research

, Volume 7, Issue 2–3, pp 307–311

Polymer-assisted complexing controlled orientation growth of ZnO nanorods

  • Ying He
  • Wenbin Sang
  • Jun’an Wang
  • Ruofeng Wu
  • Jiahua Min
Brief Communication

Abstract

The growth of the oriented zinc oxide (ZnO) nanorods on silicon substrates based on a simple novel chemical transformation and thermal hydrolysis by using polyvinyl alcohol (PVA) as self-assembling complex polymer was introduced in this paper. All the polymers were removed after chemical oxidation and only the carbonized grid backbones remained that confines the ZnO nanorod’s diameter and enhance the absorption and diffusion of ZnO at the tips of the nanorods during growth. The ZnO nanorods are investigated by FTIR, XRD and FE-SEM. The results indicated that these nanorods have fine hexagonal wurtzite crystal structure and their diameter varies from 20 to 90 nm and the length up to about 1 μm. A polymer-localized ZnO growth model is proposed, which well explains the growth behavior of ZnO nanorods.

Keywords

ZnO nanorod polymer complexzation self-assembling orientation growth, composite material 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, S.J., Liu, Y.C., Ma, J.G., Lu, Y.M., Zhang, J.Y., Shen, D.Z., Fan, X.W. 2003Effects of thermal treatment on the properties of ZnO films deposited on MgO-buffered Si substratesJ. Cryst. Growth2548691CrossRefGoogle Scholar
  2. Choy, J., Jang, E., Won, J., Chung, J., Jang, D., Kim, Y. 2003Soft solution route to directionally grown ZnO nanorod arrays on Si wafer; room-temperature ultraviolet laserAdv. Mater.1519111914CrossRefGoogle Scholar
  3. Fujimura, N., Nishihara, T., Goto, S., Xu, J., Ito, T. 1993Control of preferred orientation for ZnO_{\rm x} films: control of self-textureJ. Cryst. Growth130269279CrossRefGoogle Scholar
  4. Haga, K., Suzuki, T., Kashiwaba, Y., Watanabe, H., Zhang, B.P., Segawa, Y. 2003High-quality ZnO films prepared on Si wafers by low-pressure MO-CVDThin Solid Films433131134CrossRefGoogle Scholar
  5. Huang, M.H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R., Yang, P. 2001Room-temperature ultraviolet nanowire nanolasersScience29218971899CrossRefPubMedGoogle Scholar
  6. Jiu, J., Kurumada, K., Tanigaki, M. 2003Preparation of nanoporous ZnO using copolymer gel templateMater. Chem. Phys.819398CrossRefGoogle Scholar
  7. Kind, H., Yan, H., Messer, B., Law, M., Yang, P. 2002Nanowire ultraviolet photodetectors and optical switchesAdv. Mater.14158160CrossRefGoogle Scholar
  8. Nyquist, R.A., Kagel, R.O. 1997Handbook of Infrared and Raman Spectra of Inorganic Compounds and Organic SaltsAcademic PressSan DiegoGoogle Scholar
  9. Ryu, Y.R., Kim, W.J., White, H.W. 2000Fabrication of homostructural ZnO p-n junctionsJ. Cryst. Growth219419422CrossRefGoogle Scholar
  10. Wang, Z., Li, H.L. 2002Highly ordered zinc oxide nanotubules synthesized within the anodic aluminum oxide templateAppl. Phys. A74201203CrossRefGoogle Scholar
  11. Wiersma, D. 2000The smallest random laserNature406132133CrossRefPubMedGoogle Scholar
  12. Xing, Y.J., Xi, Z.H., Xue, Z.Q., Zhang, X.D., Song, J.H. 2003Optical properties of the ZnO nanotubes synthesized via vapor phase growthAppl. Phys. Lett.8316891691CrossRefGoogle Scholar
  13. Zheng, M.J., Zhang, L.D., Li, G.H., Shen, W.Z. 2002Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition techniqueChem. Phys. Lett.363123128CrossRefGoogle Scholar
  14. 2000. Joint Committee on Powder Diffraction Standards-International Center for Diffraction Data, JCPDS-ICDDGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Ying He
    • 1
  • Wenbin Sang
    • 1
  • Jun’an Wang
    • 1
  • Ruofeng Wu
    • 1
  • Jiahua Min
    • 1
  1. 1.School of Materials Science and EngineeringShanghai UniversityShanghaiP.R. China

Personalised recommendations