Advertisement

Journal of Nanoparticle Research

, Volume 6, Issue 4, pp 377–382 | Cite as

Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology

  • Veronica Armendariz
  • Isaac Herrera
  • Jose R. peralta-videa
  • Miguel Jose-yacaman
  • Horacio Troiani
  • Patricia Santiago
  • Jorge L. Gardea-Torresdey
Article

Abstract

Oat (Avena sativa) biomass was studied as an alternative to recover Au(III) ions from aqueous solutions and for its capacity to reduce Au(III) to Au(0) forming Au nanoparticles. To study the binding trend of Au(III) to oat and the possible formation of Au nanoparticles, the biomass and a solution of Au(III) were reacted for a period of 1 h at pH values ranging from 2 to 6. The results demonstrated that Au(III) ions were bound to oat biomass in a pH-dependent manner, with the highest adsorption (about 80%) at pH 3. HRTEM studies showed that oat biomass reacted with Au(III) ions formed Au nanoparticles of fcc tetrahedral, decahedral, hexagonal, icosahedral multitwinned, irregular, and rod shape. To our knowledge, this is the second report about the production of nanorods as a product of the reaction of a Au(III) solution with a biological material. These studies also showed that the pH of the reaction influenced the nanoparticle size. The smaller nanoparticles and the higher occurrence of these were observed at pH values of 3 and 4, whereas the larger nanoparticles were observed at pH 2.

gold nanoparticles oat biomass pH nanobiotechnology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armendariz V., M. Jose-Yacaman, A. Duarte-Moller, J.R. peralta-Videa, H. Troiani, I. Herrera & J.L. Gardea-Torresdey, 2004. HRTEM characterization of gold nanoparticles produced by wheat biomass. Rev. Mex. Fis. (in press).Google Scholar
  2. Brust M., D. Bethell, C.J. Kiely & D.J. Schiffrin, 1998. Selfassembled gold nanoparticle thin films with nonmetallic optical and electronic properties. Langmuir 14, 5425–5429.Google Scholar
  3. Gardea-Torresdey J.L., K.J. Tiemann, G. Gamez, K. Dokken, S. Tehuacamanero & M. Jose-Yacaman, 1999. Gold nanoparticles obtained by bio-precipitation from gold(III) solutions. J. Nanopart. Res. 1, 397–404.Google Scholar
  4. Gardea-Torresdey J.L., J.G. Parsons, E. Gomez, J.R. Peralta-Videa, H.E. Troiani, P. Santiago & M. Jose Yacaman, 2002a. Formation of Au nanoparticle inside live alfalfa plants. Nano Lett. 2, 397–401.Google Scholar
  5. Gardea-Torresdey J.L., K.J. Tiemann, J.G. Parsons, G. Gamez & M. Jose Yaccaman, 2002b. Characterization of trace level Au(III) binding to alfalfa biomass. Adv. Environ. Res. 6, 313–323.Google Scholar
  6. Gardea-Torresdey J.L., E. Gomez, J.R. Peralta-Videa, J.G. Parsons, H. Troiani & M. Jose-Yacaman, 2003. Alfalfa sprouts: A natural source for the synthesis of silver nanoparticles. Langumir. 4, 1357–1361.Google Scholar
  7. Goia D.V. & E. Matijevic, 1999. Tailoring the particle size of monodispersed colloidal gold. Colloids Surf. A. 146, 139–152.Google Scholar
  8. Greene B., M. Hosea, R. McPherson, M. Henzi, M.D. Alexander & D.W. Darnall, 1986. Interaction of gold(I) and gold(III) complexes with algal biomass. Environ. Sci. Technol. 20, 627–632.Google Scholar
  9. Hosea M.,B. Greene, R. McPherson, M. Henzl, M.D. Alexander & D.W. Darnall, 1986. Accumulation of elemental gold on the alga chlorella vulgaris. Inorg. Chem. Acta 123, 161–165.Google Scholar
  10. Kohler J.M., A. Csaki, J. Reichert, R. Moller, W. Straube & W. Fritzche, 2001. Selective labeling of oligonucleotide monolayers by metallic nanobeads for fast optical readout of DNA-chips. Sensor Actuators Chem B 76, 166–172.Google Scholar
  11. Kuyucak N. & B. Volesky, 1989. Accumulation of gold by algal biosorbent. Biorecovery 1, 189–204.Google Scholar
  12. Lopez M.L., J.L. Gardea-Torresdey, J.R. Peralta-Videa, G. de la Rosa, V. Armendariz, I. Herrera & H. Troiani, 2004. Gold binding by native and chemically modified hop biomasses. Bioinorg. Chem. Appl. (accepted for publication).Google Scholar
  13. Mafune F., J. Kohono, Y. Takeda & T. Kondow, 2002. Full physical preparation of size-selected gold nanoparticles in solutions: Laser ablation and laser induced size control. J. Phys. Chem. B 106, 7575–7577.Google Scholar
  14. Magnusson M.H., K. Deppert, J. Malm, J. Bovin & L. Samuelson, 1999. Size-selected gold nanoparticles by aerosol technology. Nanostruct. Mater. 12, 45–48.Google Scholar
  15. Martin C.R. & D.T. Mitchell, 1998. Nanomaterials on analytical chemistry. Anal. Chem. 9, 322A–327A.Google Scholar
  16. McConnell W.P, J.P. Novak, L.C. Brousseau III, R.R. Fuiere, R.C. Tenent & D.L Feldheim, 2000. Electronic and optical properties of chemically modified nanoparticles and molecularly bridged nanoparticle arrays. J. Phys. Chem. B 104, 8925–8930.Google Scholar
  17. Mukherjee P., A. Ahmad, D, Mandal, S. Senapati, S.R. Sainkar, S. Mohammad, I. Khan, R. Ramani, R. Parischa, P.V. Ajayakumar, M. Alam, M. Sastry & R. Kumar, 2001. Bioreduction of AuCl4 ) ions by fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew. Chem. Int. Ed. 40, 3585–3588.Google Scholar
  18. Mukherjee P., S. Senapati, D. Mandal, A. Ahmad, M.I. Khan, R. Kumar & M. Sastry, 2002. Extracellular synthesis of gold nanoparticles by using Fusarium oxysporum. Chem. Biochem. 5, 461–463.Google Scholar
  19. Okitsu K., A. Yue, S. Tanabe, H. Matsumoto & Y. Yobiko, 2001. Formation of colloidal nanoparticles in a ultrasonic field: control of rate of gold(III) reduction and size formed nanoparticles. Langmuir 17, 7717–7720.Google Scholar
  20. Sau T.K., Pal, A., Jana, N.R., Wang, Z.L. & T. Pal, 2001. Size controlled synthesis of gold nanoparticles using photochemically prepared seed particles. J. Nanopart. Res. 3, 257–261.Google Scholar
  21. Tanaka K., 1999. Nanotechnology towards the 21st century. Thin Solid Films 341, 120–125.Google Scholar
  22. Tolles W.M., 1996. Nanoscience and nanotechnology in Europe. Nanotechnology 7, 59–105.Google Scholar
  23. Troiani H.E., A. Camacho-Bragado, V. Armendariz, J.L. Gardea-Torresday & M. Jose Yacaman, 2003. Synthesis of carbon onions by gold nanoparticles and electron irradiation. Chem. Mater. 15, 1029–1031.Google Scholar
  24. Turkevich J.,1985a. Colloidal gold part I: Historical and preparative aspects, morphology and properties. Gold Bull. 18, 86–91.Google Scholar
  25. Turkevich J.,1985b. Colloidal gold part II: Color, coagulation, adhesion, alloying and catalytic properties. Gold Bull. 18, 125–131.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Veronica Armendariz
    • 1
  • Isaac Herrera
    • 1
  • Jose R. peralta-videa
    • 1
  • Miguel Jose-yacaman
    • 2
    • 3
  • Horacio Troiani
    • 2
  • Patricia Santiago
    • 3
  • Jorge L. Gardea-Torresdey
    • 1
    • 4
  1. 1.Department of ChemistryUniversity of Texas at El PasoUSA
  2. 2.CNM, Texas Material Institute and Chemical Engineering DepartmentUniversity of Texas at AustinUSA
  3. 3.Instituto de Fisica, UNAMMexico
  4. 4.Environmental Science and Engineering Ph.D. ProgramUniversity of Texas at El PasoUSA

Personalised recommendations