Natural Language Semantics

, Volume 19, Issue 3, pp 227–256 | Cite as

Interface transparency and the psychosemantics of most

  • Jeffrey LidzEmail author
  • Paul Pietroski
  • Justin Halberda
  • Tim Hunter


This paper proposes an Interface Transparency Thesis concerning how linguistic meanings are related to the cognitive systems that are used to evaluate sentences for truth/falsity: a declarative sentence S is semantically associated with a canonical procedure for determining whether S is true; while this procedure need not be used as a verification strategy, competent speakers are biased towards strategies that directly reflect canonical specifications of truth conditions. Evidence in favor of this hypothesis comes from a psycholinguistic experiment examining adult judgments concerning ‘Most of the dots are blue’. This sentence is true if and only if the number of blue dots exceeds the number of nonblue dots. But this leaves unsettled, e.g., how the second cardinality is specified for purposes of understanding and/or verification: via the nonblue things, given a restriction to the dots, as in ‘|{x: Dot(x) & ~Blue(x)}|’; via the blue things, given the same restriction, and subtraction from the number of dots, as in ‘|{x: Dot(x)}| – |{x: Dot(x) & Blue(x)}|’; or in some other way. Psycholinguistic evidence and psychophysical modeling support the second hypothesis.


Analog magnitude Approximate number system Semantics–cognition interface Number Quantification Mathematics Most Language processing Language development 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barwise J., Cooper R. (1981) Generalized quantifiers in natural language. Linguistics and Philosophy 4: 159–219CrossRefGoogle Scholar
  2. Boolos G. (1998) Logic, logic and logic. Harvard University Press, Cambridge, MAGoogle Scholar
  3. Brannon E.M., Lutz D., Cordes S. (2006) The development of area discrimination and its implications for number representation in infancy. Developmental Science 9(6): F59–F64CrossRefGoogle Scholar
  4. Chomsky N. (1986) Knowledge of language: Its nature, origins and use. Praeger, New YorkGoogle Scholar
  5. Church A. (1941) The calculi of lambda conversion. Princeton University Press, PrincetonGoogle Scholar
  6. Cordes S., Gallistel C., Gelman R., Lathan P. (2007) Nonverbal arithmetic in humans: light from noise. Perception & Psychophysics 69: 1185–1203CrossRefGoogle Scholar
  7. Cresswell M. (1985) Structured meanings. MIT Press, Cambridge, Mass.Google Scholar
  8. Davidson, D. 1967. The logical form of action sentences. In Essays on actions and events, 105–148. Oxford: Clarendon Press.Google Scholar
  9. Davies M. (1987) Tacit knowledge and semantic theory: Can a five per cent difference matter?. Mind 96: 441–462CrossRefGoogle Scholar
  10. Dehaene S. (1997) The number sense: How the mind creates mathematics. Oxford University Press, New YorkGoogle Scholar
  11. Dummett M. (1973) Frege: Philosophy of Language. Harvard University Press, Cambridge, Mass.Google Scholar
  12. Evans, G. 1981. Semantic theory and tacit knowledge. In Wittgenstein: To Follow a Rule, ed. S. Holtzman and C. Leich, 118–137. London: Routledge and Kegan Paul.Google Scholar
  13. Feigenson L., Dehaene S., Spelke E.S. (2004) Core systems of number. Trends in Cognitive Science 8: 307–314CrossRefGoogle Scholar
  14. Fodor J. (2003) Hume variations. Oxford University Press, OxfordGoogle Scholar
  15. Frege, G. 1884. Die Grundlagen der Arithmetik. Breslau: Wilhelm Koebner. J.L. Austin, English trans., The foundations of arithmetic (Oxford: Basil Blackwell, 1974).Google Scholar
  16. Frege, G. 1892. Über Funktion und Begriff [English translation as ‘Function and concept’]. P. Geach and M. Black, trans., Translations from the philosophical writings of Gottlob Frege, 30–32 (Oxford: Blackwell, 1980).Google Scholar
  17. Gallistel C., Gelman R. (2000) Non-verbal numerical cognition: From reals to integers. Trends in Cognitive Sciences 4(2): 59–65CrossRefGoogle Scholar
  18. Hackl M. (2009) On the grammar and processing of proportional quantifiers: most versus more than half. Natural Language Semantics 17: 63–98CrossRefGoogle Scholar
  19. Halberda, J. in prep. What is a Weber fraction? Ms., Johns Hopkins University.Google Scholar
  20. Halberda J., Feigenson L. (2008) Developmental change in the acuity of the “Number Sense”: The approximate number system in 3-, 4-, 5-, 6-year-olds and adults. Developmental Psychology 44(5): 1457–1465CrossRefGoogle Scholar
  21. Halberda J., Mazzocco M.M.M., Feigenson L. (2008) Differences in primitive math intuitions predict math achievement. Nature 455: 665–668CrossRefGoogle Scholar
  22. Halberda J., Sires S.F., Feigenson L. (2006) Multiple spatially overlapping sets can be enumerated in parallel. Psychological Science 17: 572–576CrossRefGoogle Scholar
  23. Halle M. (2002) From memory to speech and back. Mouton de Gruyter, The HagueGoogle Scholar
  24. Higginbotham J., May R. (1981) Questions, quantifiers, and crossing. The Linguistic Review 1: 41–80CrossRefGoogle Scholar
  25. Horty J. (2007) Frege on definitions. Oxford University Press, OxfordGoogle Scholar
  26. Izard V., Dehaene S. (2008) Calibrating the mental number line. Cognition 106: 1221–1247CrossRefGoogle Scholar
  27. Jacobson, R., G. Fant, and M. Halle 1952. Preliminaries to speech analysis: the distinctive features and their correlates. Technical Report 13. Acoustics Laboratory, MIT.Google Scholar
  28. Jackendoff R. (1983) Semantics and cognition. MIT Press, Cambridge, Mass.Google Scholar
  29. Jackendoff R. (1990) Semantic structures. MIT Press, Cambridge, Mass.Google Scholar
  30. Jackendoff R. (2002) Foundations of language. Oxford University Press, OxfordCrossRefGoogle Scholar
  31. Jusczyk P. (1997) The discovery of spoken language. MIT Press, Cambridge, Mass.Google Scholar
  32. Kahneman D., Tversky A. (1973) On the psychology of prediction. Psychological Review 80: 237–251CrossRefGoogle Scholar
  33. Katz J.J., Fodor J.A. (1963) The structure of a semantic theory. Language 39: 170–210CrossRefGoogle Scholar
  34. Kuhl P. (1993) Early linguistic experience and phonetic perception: Implications for theories of developmental speech perception. Journal of Phonetics 21: 125–139Google Scholar
  35. Landau B., Jackendoff R. (1993) “What” and “where” in spatial language and spatial cognition. Behavioral and Brain Sciences 16(2): 217–238CrossRefGoogle Scholar
  36. Liberman A.M., Cooper F.S., Shankweiler D.P., Studdert-Kennedy M. (1967) Perception of the speech code. Psychological Review 74: 431–461CrossRefGoogle Scholar
  37. Liberman A.M., Mattingly I.G. (1985) The motor theory of speech perception revised. Cognition 21: 1–36CrossRefGoogle Scholar
  38. Marr D. (1982) Vision. MIT Press, Cambridge, Mass.Google Scholar
  39. Montague R. (1970) Universal grammar. Theoria 36: 373–398CrossRefGoogle Scholar
  40. Mostkowski A. (1957) On a generalization of quantifiers. Fundamenta Mathematicae 44: 12–36Google Scholar
  41. Peacocke C. (1986) Explanation in computational psychology: Language, perception and level 1.5. Mind and Language 1: 101–123CrossRefGoogle Scholar
  42. Pica P., Lemer C., Izard V., Dehaene S. (2004) Exact and approximate arithmetic in an Amazonian indigene group. Science 306: 499–503CrossRefGoogle Scholar
  43. Pietroski P. (2010) Concepts, meaning and truth: First nature, second nature and hard work. Mind & Language 25(3): 247–278CrossRefGoogle Scholar
  44. Pietroski P., Lidz J., Hunter T., Halberda J. (2009) The meaning of most: Semantics, numerosity and psychology. Mind & Language 24(5): 554–585CrossRefGoogle Scholar
  45. Poeppel D., Idsardi W., van Wassenhove V. (2008) Speech perception at the interface of neurobiology and linguistics. Philosophical Transactions of the Royal Society of London B 363: 1071–1086CrossRefGoogle Scholar
  46. Rescher, N. 1962. Plurality quantification. Journal of Symolic Logic, 27: 373–347.Google Scholar
  47. Ross J., Burr D. (2010) Vision senses number directly. Journal of Vision 10(2): 1–8CrossRefGoogle Scholar
  48. Stevens, K. 1972. The quantal nature of speech: Evidence from articulatory-acoustic data. In Human communication: A unified view, ed. E.E. David Jr. and P.B. Denes, 51–56. New York: McGraw-Hill.Google Scholar
  49. Tarski A. (1944) The semantical concept of truth and the foundations of semantics. Philosophy and Phenomenological Research 4: 341–375CrossRefGoogle Scholar
  50. Treisman A., Gormican S. (1988) Feature analysis in early vision: Evidence from search asymmetries. Psychological Review 95(1): 15–48CrossRefGoogle Scholar
  51. Treisman A., Souther J. (1985) Search asymmetry: A diagnostic for preattentive processing of separable features. Journal of Experimental Psychology: Human Perception & Performance 16(3): 459–478CrossRefGoogle Scholar
  52. Werker, J.F. 1995. Exploring developmental changes in cross-language speech perception. In An invitation to cognitive science, Part I: Language, ed. D. Osherson (series), L. Gleitman and M. Liberman (vol. eds), 87–106. Cambridge, Mass.: MIT Press.Google Scholar
  53. Whalen J., Gallistel C.R., Gelman R. (1999) Non-verbal counting in humans: The psychophysics of number representation. Psychological Science 10: 130–137CrossRefGoogle Scholar
  54. Wolfe, J.M. 1998. Visual search. In Attention, ed. H. Pashler, 13–73. London: University College London Press.Google Scholar
  55. Zosh, J.M., L. Feigenson, and J.P. Halberda (submitted). Working memory capacity for multiple collections in infancy.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Jeffrey Lidz
    • 1
    Email author
  • Paul Pietroski
    • 1
    • 2
  • Justin Halberda
    • 3
  • Tim Hunter
    • 4
  1. 1.Department of LinguisticsUniversity of MarylandCollege ParkUSA
  2. 2.Department of PhilosophyUniversity of MarylandCollege ParkUSA
  3. 3.Department of Psychological and Brain SciencesJohns Hopkins UniversityBaltimoreUSA
  4. 4.Department of LinguisticsYale UniversityNew HavenUSA

Personalised recommendations