Advertisement

Natural Computing

, Volume 18, Issue 4, pp 865–873 | Cite as

A cellular automata based approach to track salient objects in videos

  • Luca Crociani
  • Giuseppe VizzariEmail author
  • Antonio Carrieri
  • Stefania Bandini
Article
  • 38 Downloads

Abstract

In this paper we present an algorithm to track the motion of a salient object using Cellular Automata (CA). The overall work, taking inspiration from recent research on insect sensory motor system, investigates the application of non conventional computer vision approaches to evaluate their effectiveness in fulfilling this task. The proposed system employs the Sobel operator to individual frames, performing further elaborations through a CA, with the aim of detecting and characterizing moving entities within the field of view to support collision avoidance from the perspective of the viewer. The paper formally describes the adopted approach as well as its experimentation videos representing plausible situations.

Keywords

Cellular automata Motion detection Video analysis 

Notes

References

  1. Ando N, Kanzaki R (2015) A simple behaviour provides accuracy and flexibility in odour plume tracking—the robotic control of sensory-motor coupling in silkmoths. J Exp Biol 218(23):3845–3854CrossRefGoogle Scholar
  2. Ando N, Kanzaki R (2017) Using insects to drive mobile robots–hybrid robots bridge the gap between biological and artificial systems. Arthropod Struct Dev 46(5):723–735CrossRefGoogle Scholar
  3. Avidan S (2004) Support vector tracking. IEEE Trans Pattern Anal Mach Intell 26(8):1064–1072CrossRefGoogle Scholar
  4. Bandini S, Crociani L, Vizzari G (2017) An approach for managing heterogeneous speed profiles in cellular automata pedestrian models. J Cell Autom 12(5):401–421MathSciNetGoogle Scholar
  5. Canny J (1987) A computational approach to edge detection. In: Fischler MA, Firschein O (eds) Readings in computer vision. Morgan Kaufmann, San Francisco, CA, pp 184–203Google Scholar
  6. Carrieri A, Crociani L, Vizzari G, Bandini S (2018) Motion detection and characterization in videos with cellular automata. In: Cellular automata—13th international conference on cellular automata for research and industry, ACRI 2018 lecture notes in computer science, vol 11115. Springer, pp 102–111Google Scholar
  7. Chan RW, Gabbiani F (2013) Collision-avoidance behaviors of minimally restrained flying locusts to looming stimuli. J Exp Biol 216(4):641–655CrossRefGoogle Scholar
  8. Chang CL, Zhang YJ, Gdong YY (2004) Cellular automata for edge detection of images. In: Proceedings of 2004 international conference on machine learning and cybernetics (IEEE Cat. No. 04EX826), vol. 6. IEEE, pp. 3830–3834Google Scholar
  9. Chopard B (2012) Cellular automata modeling of physical systems. Springer, New York, pp 407–433Google Scholar
  10. Deriche R (1987) Optimal edge detection using recursive filtering. Int J Comput Vis 2:167–187CrossRefGoogle Scholar
  11. Fotowat H, Gabbiani F (2011) Collision detection as a model for sensory-motor integration. Ann Rev Neurosci 34(1):1–19CrossRefGoogle Scholar
  12. Georgoudas I, Kyriakos P, Sirakoulis G, Andreadis I (2010) An fpga implemented cellular automaton crowd evacuation model inspired by the electrostatic-induced potential fields. Microprocess Microsyst 34(7):285–300CrossRefGoogle Scholar
  13. Guo J, Ren T, Huang L, Liu X, Cheng MM, Wu G (2017) Video salient object detection via cross-frame cellular automata. In: 2017 IEEE international conference on multimedia and expo (ICME). IEEE, pp 325–330Google Scholar
  14. Hartbauer M (2017) Simplified bionic solutions: a simple bio-inspired vehicle collision detection system. Bioinspir Biomim 12(2):026007CrossRefGoogle Scholar
  15. Ioannidis K, Andreadis I, Sirakoulis GC (2012) An edge preserving image resizing method based on cellular automata. In: Sirakoulis GC, Bandini S (eds) Cellular automata. Springer, Berlin, pp 375–384CrossRefGoogle Scholar
  16. Kalogeropoulos G, Sirakoulis GC, Karafyllidis I (2013) Cellular automata on FPGA for real-time urban traffic signals control. J Supercomput 65(2):664–681CrossRefGoogle Scholar
  17. Katiyar S, Arun P (2014) Comparative analysis of common edge detection techniques in context of object extraction. arXiv preprint arXiv:1405.6132
  18. Kumar T, Sahoo G (2010) A novel method of edge detection using cellular automata. Int J Comput Appl 9(4):38–44Google Scholar
  19. Popovici A, Popovici D (2002) Cellular automata in image processing. In: Fifteenth international symposium on mathematical theory of networks and systems. CiteseerGoogle Scholar
  20. Prewitt JM (1970) Object enhancement and extraction. Picture Process Psychopictorics 10(1):15–19Google Scholar
  21. Qin Y, Lu H, Xu Y, Wang H (2015) Saliency detection via cellular automata. In: 2015 IEEE Conference on computer vision and pattern recognition (CVPR). IEEE, pp 110–119Google Scholar
  22. Roberts LG (1963) Machine perception of three-dimensional solids. Ph.D. thesis, Massachusetts Institute of TechnologyGoogle Scholar
  23. Rundo L, Militello C, Russo G, Pisciotta P, Valastro LM, Sabini MG, Vitabile S, Gilardi MC, Mauri G (2016) Neuro-radiosurgery treatments: MRI brain tumor seeded image segmentation based on a cellular automata model. In: Cellular Automata—12th international conference on cellular automata for research and industry, ACRI 2016. Lecture notes in computer science, vol 9863. Springer, pp 323–333Google Scholar
  24. Santé I, García AM, Miranda D, Crecente R (2010) Cellular automata models for the simulation of real-world urban processes: a review and analysis. Landsc Urban Plan 96(2):108–122CrossRefGoogle Scholar
  25. Sobel I (1990) An isotropic 3 × 3 image gradient operator. In: Freeman H (ed) Machine vision for three-dimensional scenes. Academic Press, San Diego, CA, pp 376–379Google Scholar
  26. Toffoli T, Margolus N (1987) Cellular automata machines: a new environment for modeling. MIT Press, CambridgeCrossRefGoogle Scholar
  27. Vergassola M, Villermaux E, Shraiman BI (2007) ‘Infotaxis’ as a strategy for searching without gradients. Nature 445:406CrossRefGoogle Scholar
  28. Voges N, Chaffiol A, Lucas P, Martinez D (2014) Reactive searching and infotaxis in odor source localization. PLoS Comput Biol 10(10):1–13CrossRefGoogle Scholar
  29. Wolfram S (1984) Cellular automata as models of complexity. Nature 311(5985):419–424CrossRefGoogle Scholar
  30. Yilmaz A, Javed O, Shah M (2006) Object tracking: a survey. ACM Comput Surv (CSUR) 38(4):13CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.CSAI Research CenterUniversity of Milano – BicoccaMilanItaly

Personalised recommendations