Skip to main content
Log in

Multi-source, multi-object and multi-domain (M-SOD) electromagnetic interference system optimised by intelligent optimisation approaches

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

With the wide use of electromagnetic information equipment, a large number of wireless radiation systems coexisting in the same region produce intentional or unintentional interference on electronic receivers. For the purpose of intentional electromagnetic interference, it is necessary to realise the efficient suppression of other receivers at little cost. When multiple transmitting sources are used to interfere with multiple receivers, the parameters of multiple transmitting sources are required to be comprehensively optimised and set so as to achieve a desired high-efficiency interference. Therefore, we propose a novel method to optimise the setting of parameters of a multi-source, multi-object and multi-domain (M-SOD) interference system based on intelligent optimisation approaches. Furthermore, this study also builds an intelligent optimisation model, which contains multiple transmitters and receivers which involved many parameters include position, direction of space domain, frequency, bandwidth, and power. Then the model is abstracted to the problem of single-objective optimisation with constraints and optimised through a traditional GA and an improved FWA method. The extensive experiments and comparisons show that the proposed algorithm is an effective approach for setting the parameters of an M-SOD electromagnetic interference system and superior to the conventional method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The derivation is provided in “Appendix 1”.

  2. The derivation is provided in “Appendix 2”.

References

  • Altman E, Avrachenkov K, Garnaev A (2010) Fair resource allocation in wireless networks in the presence of a jammer. Perform Eval 67(4):338–349

    Article  Google Scholar 

  • Altman E, Avrachenkov K, Garnaev A (2011) Jamming in wireless networks under uncertainty. Mob Netw Appl 16(2):246–254

    Article  Google Scholar 

  • Amuru SD, Buehrer RM (2015) Optimal jamming against digital modulation. IEEE Trans Inf Forensics Secur 10(10):2212–2224

    Article  Google Scholar 

  • Bayram S, Vanli ND, Dulek B et al (2012) Optimum power allocation for average. IEEE Commun Lett 16(8):1153–1156

    Article  Google Scholar 

  • Chen L, Leneutre J (2011) Fight jamming with jamming—a game theoretic analysis of jamming attack in wireless networks and defense strategy. Comput Netw 55(9):2259–2270

    Article  Google Scholar 

  • Commander CW, Pardalos PM, Ryabchenko V et al (2008) Jamming communication networks under complete uncertainty. Optim Lett 2(1):53–70

    Article  MathSciNet  MATH  Google Scholar 

  • Dey BK, Jaggi S, Langberg M et al (2013) Upper bounds on the capacity of binary channels with causal adversaries. IEEE Trans Inf Theory 59(6):3753–3763

    Article  MathSciNet  MATH  Google Scholar 

  • Dong L, Han Z, Petropulu AP et al (2010) Improving wireless physical layer security via cooperating relays. IEEE Trans Signal Process 58(3 PART 2):1875–1888

    Article  MathSciNet  MATH  Google Scholar 

  • Dorigo M (1992) Optimization, learning and natural algorithms. Politecnico di Milano, Milan

    Google Scholar 

  • Eberhart R, Kennedy J (2002) A new optimizer using particle swarm theory. In: International symposium on MICRO machine and human science, pp 39–43

  • Fan Y, Liao X, Gao Z et al (2016) Physical layer security based on real interference alignment in K-user MIMO Y wiretap channels. In: 2016 IEEE international conference on communications workshops (ICC), (61302067), pp 207–212

  • Filho C, Neto F, Lins A et al (2009) A novel search algorithm based on fish school behavior. In: IEEE international conference on systems, man and cybernetics, pp 2646–2651

  • Fogel DB, Anderson RW (2000) Revisiting Bremermann’s genetic algorithm. I. Simultaneous mutation of all parameters. In: Congress on evolutionary computation, vol 2, pp 1204–1209

  • Fraser A (1957a) Simulation of genetic systems by automatic digital computers I. Introduction. Aust J Biol Sci 10(4):484–491

    Article  Google Scholar 

  • Fraser A (1957b) Simulation of genetic systems by automatic digital computers II. Effects of linkage on rates of advance under selection. Aust J Biol Sci 10(4):492–500

    Article  Google Scholar 

  • Gao Y, Chen W, Xie T et al (2009) Doppler spread estimation for nonrayleigh fading channel. In: The 4th IEEE conference on industrial electronics and applications, Xi’an, pp 1106–1109

  • Gencer C, Aydogan EK, Celik C (2008) A decision support system for locating VHF/UHF radio jammer systems on the terrain. Inf Syst Front 10(1):111–124

    Article  Google Scholar 

  • Goldsmith A (2005) Wireless communications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gomaa A, Al-Dhahir N (2011) A sparsity-aware approach for NBI estimation in MIMO-OFDM. IEEE Trans Wirel Commun 10(6):1854–1862

    Article  Google Scholar 

  • Grover K, Lim A, Yang Q (2014) Jamming and anti-jamming techniques in wireless networks: a survey. Int J Ad Hoc Ubiquitous Comput 17(4):197

    Article  Google Scholar 

  • Heyns AM, van Vuuren JH (2018) Multi-type, multi-zone facility location. Geograph Anal 50(1):3–31

    Article  Google Scholar 

  • Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Erciyes University, Kayseri

    Google Scholar 

  • Law YW, Palaniswami M, Van Hoesel L et al (2009a) Energy-efficient link-layer jamming attacks against wireless sensor network MAC protocols. ACM Trans Sens Netw (TOSN). https://doi.org/10.1145/1464420.1464426

    Article  Google Scholar 

  • Law YW, Palaniswami M, Van Hoesel L et al (2009b) Energy-efficient link-layer jamming attacks against wireless sensor network MAC protocols. ACM Trans Sens Netw 5(1):1–38

    Article  Google Scholar 

  • Lee K, Kwon HM, Ding Y et al (2011a) Noncooperative distributed MMSE relay schemes under jamming environment and node geometry in wireless relay networks. In: IEEE wireless telecommunications symposium (WTS), pp 1–5

  • Lee K, Kwon HM, Ding Y et al (2011b) Node geometry and broadband jamming in noncooperative relay networks under received power constraint. In: The 34th IEEE Sarnoff symposium, pp 1–5

  • Li C, Dai H (2013) Connectivity of multi-channel wireless networks under jamming attacks. In: IEEE Global Communications Conference (GLOBECOM), pp 706–711

  • Li M, Koutsopoulos I (2010) Optimal jamming attack strategies and network defense policies in wireless sensor networks. IEEE Trans Mob Comput 9(8):1119–1133

    Article  Google Scholar 

  • Li J, Tanying (2017) Loser-out tournament based fireworks algorithm for multi-modal function optimization. IEEE Trans Evolut Comput

  • Li H, Pei B, Huang Y (2010) Performance of the direct sequence spread spectrum system with single-tong jamming. In: IEEE international conference on information theory and information security, pp 458–461

  • Liu Z, Liu H, Xu W et al (2011a) Exploiting jamming-caused neighbor changes for jammer localization. IEEE Trans Parallel Distrib Syst 23(3):547–555

    Article  Google Scholar 

  • Liu S, Bai W, Xue S et al (2011b) Research of the comparative analysis of the frame structure of TD-SCDMA and WCDMA. In: Global mobile congress, Shanghai, pp 1–3

  • Liu Y, Li J, Petropulu AP (2013) Destination assisted cooperative jamming for wireless physical-layer security. IEEE Trans Inf Forensics Secur 8(4):682–694

    Article  Google Scholar 

  • Luo J, Andrian JH, Zhou C (2007) Bit error rate analysis of jamming for OFDM systems. In: Wireless telecommunications symposium

  • Medal HR (2016) The wireless network jamming problem subject to protocol interference. Networks 47(1):26–36

    MathSciNet  MATH  Google Scholar 

  • Naseem A, Khan SA, Malik AW (2017) A real-time man-in-loop threat evaluation and resource assignment in defense. J Oper Res Soc 68(6):725–738

    Article  Google Scholar 

  • Pelechrinis K, Koutsopoulos I, Broustis I et al (2016) Jammer localization in wireless networks: an experimentation-driven approach. Comput Commun 86:75–85

    Article  Google Scholar 

  • Price KV, Storn RM, Lampinen JA (2006) Differential evolution: a practical approach to global optimization. Springer, Berlin

    MATH  Google Scholar 

  • Rechenberg I (1965) Cybernetic solution path of an experimental problem. In Royal Aircraft Establishment Translation No. 1122 (trans: Toms BF) (August 1965). Key: citeulike:1505176

  • Rechenberg I (1971) Evolutionstrategie: optimierung technisher systeme nach prinzipien des biologischen evolution. Technical University of Berlin, Berlin

    Google Scholar 

  • Reed J, Toombs R, Barricelli NA (1967) Simulation of biological evolution and machine learning. J Theor Biol 17(3):319–342

    Article  Google Scholar 

  • Sagduyu YE, Berryt RA, Ephremidesi A (2010) Wireless jamming attacks under dynamic traffic uncertainty. In: Modeling and optimization in mobile, ad hoc and wireless networks (WiOpt), pp 303–312

  • Sagduyu YE, Berry RA, Ephremides A (2011) Jamming games in wireless networks with incomplete information. IEEE Commun Mag 49(8):112–118

    Article  Google Scholar 

  • Schwefel HP (1975) Evolutionsstrategie und numerische optimierung. Technical University of Berlin, Berlin

    Google Scholar 

  • Song T, Stark WE, Li T et al (2016) Optimal multiband transmission under hostile jamming. IEEE Trans Commun 64(9):4013–4027

    Article  Google Scholar 

  • Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359

    Article  MathSciNet  MATH  Google Scholar 

  • Tanergüçlü T, Maraş H, Gencer C et al (2012) A decision support system for locating weapon and radar positions in stationary point air defence. Inf Syst Front 14(2):423–444

    Article  Google Scholar 

  • Tan Y, Zhu Y (2010) Fireworks algorithm for optimization. In: International conference on advances in swarm intelligence, pp 355–364

  • Tayebi A, Berber S, Swain A (2017) A new approach for error rate analysis of wide-band DSSS-CDMA system with imperfect synchronization. Wirel Pers Commun 98(10):1–28

    Google Scholar 

  • Vadlamani S, Medal HR et al (2014) A bi-level programming model for the wireless network jamming placement problem. In: Proceedings of the 2014 industrial and systems engineering research conference

  • Veronica Belmega E, Chorti A (2017) Protecting secret key generation systems against jamming: energy harvesting and channel hopping approaches. IEEE Trans Inf Forensics Secur 12(11):2611–2626

    Article  Google Scholar 

  • Wang L, Cao C, Ma JX et al (2013) Cluster-based cooperative jamming in wireless multi-hop networks. In: Personal indoor and mobile radio communications (PIMRC), pp 169–174

  • Yang XS (2009) Firefly algorithms for multimodal optimization. In: Watanabe O, Zeugmann T (eds) Stochastic algorithms: foundations and applications. Lecture Notes in Computer Science, vol 5792. Springer, Berlin, pp 169–178

    Chapter  Google Scholar 

  • Yang D, Xue G, Zhang J et al (2013) Coping with a smart jammer in wireless networks: a Stackelberg game approach. IEEE Trans Wirel Commun 12(8):4038–4047

    Article  Google Scholar 

  • Zang G, Gao Y, Mu J (2010) Performance analysis of the cooperative DS/SS systems in single-tone interference over flat Rayleigh fading channels. In: International conference on communications, circuits and systems, pp 126–130

  • Zhang Y, Yang L (2014) Triangle and GA methods for UAVs jamming. Math Probl Eng 2014(2):1–8

    Google Scholar 

  • Zhang L, Guan Z, Melodia T (2014) Cooperative anti-jamming for infrastructure-less wireless networks with stochastic relaying. In: INFO-COM, pp 549–557

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (NSFC) under Grant Nos. 61673025, 61271353 and partially supported by National Key Basic Research Development Plan (973 Plan) Project of China under Grant No. 2015CB352302.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minle Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

Appendix 1: Derivation of instantaneous SINR \(\gamma\)

In the research, the communication mode used in the interfered communication system is TD-SCDMA and the uplink data frame structure is shown in Fig. 10 (Liu et al. 2011b). The structure comprises two data blocks in the length of 352 chips, a midamble code (training sequence) in the length of 144 chips and a guard interval in the length of 16 chips.

Fig. 10
figure 10

Data frame structure of TD-SCDMA system (GP represents the guard interval and \(T_c\) indicates the chip period)

Assuming that the spread spectrum code sequence \(c\left( t \right)\) is a PN code, the autocorrelation function of this PN code can be expressed as:

$$\begin{aligned} R_c \left( t \right) =\left\{ \begin{array}{ll} 1-{\left| \tau \right| } / {T_c } &{} \left| \tau \right| \le T_c \\ 0&{} \left| \tau \right| >T_c \\ \end{array} \right. \end{aligned}$$
(15)

where \(T_c\) represents the chip period. The power spectral density function of PN code is obtained via the Fourier transform of the autocorrelation function:

$$\begin{aligned} S_c \left( t \right) =\mathrm{\mathbf{F}}\left( {R_c \left( t \right) } \right) =T_c Sa^2\left( {fT_c } \right) \end{aligned}$$
(16)

where \(\mathrm{\mathbf{F}}\) indicates the Fourier transform, and

$$\begin{aligned} Sa\left( x \right) =\frac{\sin \left( {\pi x} \right) }{\pi x} \end{aligned}$$
(17)

Supposing that the interference signals are independent, the correlation function and the power spectral density of \(J_{m,t} \left( t \right)\) are given by:

$$\begin{aligned} R_J \left( \tau \right)&= \left( {U_m^2 +R_{U_n } \left( \tau \right) } \right) e^{j2\pi f_m \tau } \end{aligned}$$
(18)
$$\begin{aligned} S_J \left( f \right)&= U_m^2 \delta \left( {f-f_m } \right) +S_{U_n } \left( {f-f_m } \right) \nonumber \\&= \frac{F\left( {\varDelta \beta _m } \right) G_r \lambda ^2L_b }{\left( {4\pi R_m } \right) ^2}\left( {U_m^2 \delta \left( {f-f_m } \right) +S_{U_n } \left( {f-f_m } \right) } \right) \end{aligned}$$
(19)

The power of \(J_{m,t} \left( t \right)\) is \(P_m (P_m =U_m ^2+R_{U_n } \left( 0 \right) )\), where \(R_{U_n } \left( \tau \right)\) indicates the autocorrelation function.

If it is assumed that the channels are classical Clarke spectra, the autocorrelation function of \(h_i \left( t \right)\) is:

$$\begin{aligned} R_h \left( \tau \right) =J_0 \left( {2\pi f_{d,i} \tau } \right) \end{aligned}$$
(20)

where \(J_0 \left( t \right)\) denotes the first-class zero-order Bessel function. The power spectral density of \(h\left( t \right)\) is:

$$\begin{aligned} S_h \left( f \right) =\left\{ \begin{array}{ll} \frac{1}{\pi f_{d,i} }\frac{1}{\sqrt{1-\left( {f / {f_{d,i} }} \right) ^2} }&{}\left| f \right| <f_{d,i} \\ 0&{} \text {else} \\ \end{array} \right. \end{aligned}$$
(21)

Assuming that \(h_i \left( t \right)\), \(J_i \left( t \right)\), and \(c\left( t \right)\) are independent, the autocorrelation function of \(\sum \limits _{i=1}^{Q_n } {h_i \left( t \right) J_i \left( t \right) } c^*\left( t \right)\) is:

$$\begin{aligned} R\left( \tau \right) =\sum \limits _{i=1}^{Q_n } {R_h \left( \tau \right) R_J \left( \tau \right) R_c \left( \tau \right) } \end{aligned}$$
(22)

According to the property of convolution, the power spectral density function of

\(\sum \limits _{i=1}^{Q_n } {h_i \left( t \right) J_i \left( t \right) } c^*\left( t \right)\) is:

$$\begin{aligned} \begin{aligned}&S\left( f \right) =\sum \limits _{m=1}^M {S_h \left( f \right) *S_J \left( f \right) *S_c \left( f \right) } \\&\quad =\sum \limits _{m=1}^M {\frac{1}{\pi f_{d,m} }S_h \left( f \right) *\frac{F\left( {\varDelta \beta _m } \right) G_r \lambda ^2L_b }{\left( {4\pi R_m } \right) ^2}\left( {U_m^2 \delta \left( {f-f_m } \right) +S_{U_n } \left( {f-f_m } \right) } \right) *T_c Sa^2\left( {fT_c } \right) } \\&\quad =\sum \limits _{m=1}^M {\frac{T_c }{\pi f_{d,m} }\frac{F\left( {\varDelta \beta _m } \right) G_r \lambda ^2L_b }{\left( {4\pi R_m } \right) ^2}\left\{ {U_m^2 S_h \left( f \right) *Sa^2\left[ {\left( {f-f_m } \right) T_c } \right] +S_h \left( f \right) *S_{U_n } \left( {f-f_m } \right) *Sa^2\left( {fT_c } \right) } \right\} } \\&\quad =\sum \limits _{m=1}^M {\frac{T_c }{\pi f_{d,m} }\frac{F\left( {\varDelta \beta _m } \right) G_r \lambda ^2L_b }{\left( {4\pi R_m } \right) ^2}\left\{ {\frac{U_m^2 }{\sqrt{1-\left( {f / {f_{d,m} }} \right) ^2} }*Sa^2\left[ {\left( {f-f_m } \right) T_c } \right] +S_h \left( f \right) *S_{U_n } \left( {f-f_m } \right) *Sa^2\left( {fT_c } \right) } \right\} } \\&\quad =\sum \limits _{m=1}^M {\frac{T_c }{\pi f_{d,m} }\frac{F\left( {\varDelta \beta _m } \right) G_r \lambda ^2L_b }{\left( {4\pi R_m } \right) ^2}\left\{ {\int _{-f_{d,m} }^{f_{d,m} } {\frac{U_m^2 Sa^2\left[ {\left( {f-t-f_m } \right) T_c } \right] }{\sqrt{1-\left( {t / {f_{d,m} }} \right) ^2} }dt} +S_h \left( f \right) *S_{U_n } \left( {f-f_m } \right) *Sa^2\left( {fT_c } \right) } \right\} } \\ \end{aligned} \end{aligned}$$
(23)

Supposing that \(f_0\) is the carrier frequency, the power spectral density of \(\sum \nolimits _{m=1}^M {h_m \left( t \right) J_m } c^*\left( t \right)\) at \(f_0\) is:

$$\begin{aligned} N_I =S\left( {f_0 } \right) \end{aligned}$$
(24)

Supposing that the power spectral density function of received noise \(n\left( t \right)\) is \(S_n \left( f \right)\), the power spectral density of \(n\left( t \right) c^*\left( t \right)\) at \(f_0\) is:

$$\begin{aligned} S_{nc} \left( {f_0 } \right) =S_n \left( {f_0 } \right) *S_c \left( {f_0 } \right) =\int _{-\infty }^\infty {N_0 S_c \left( {f-f_0 } \right) df} =N_0 \end{aligned}$$
(25)

The received instantaneous SINR \(\gamma\) is:

$$\begin{aligned} \gamma =\frac{P_s T_b }{\left| \alpha \right| ^2N_I +N_0 }=\frac{E_b }{\left| \alpha \right| ^2N_I +N_0 }=\frac{1}{\left| \alpha \right| ^2{N_I } / {N_0 }+1}\frac{E_b }{N_0 } \end{aligned}$$
(26)

where \(E_b =P_s T_b\) denotes the bit energy and \(T_b\) represents the symbol period.

Appendix 2: Derivation of BER

Based on the literature (Goldsmith 2005), the average BER of the nth receiver is:

$$\begin{aligned} p_{b,n} =\int _0^\infty {Q\left( {\sqrt{2\gamma } } \right) p\left( \gamma \right) d\gamma } \end{aligned}$$
(27)

where \(Q\left( x \right) =\frac{1}{2\pi }\int _x^\infty {\exp \left( {-\frac{u^2}{2}} \right) du}\) and \(p\left( \gamma \right)\) indicates the probability density function of \(\gamma\). According to the probability density function of \(\left| \alpha \right| ^{[57]}\):

$$\begin{aligned} p\left( {\left| \alpha \right| } \right) =\frac{\left| \alpha \right| }{\sigma ^2}\exp \left( {-\frac{\left| \alpha \right| ^2}{2\sigma ^2}} \right) \end{aligned}$$
(28)

Thus:

$$\begin{aligned} p\left( \gamma \right) =\frac{{E_b } / {N_0 }}{2\sigma ^2\gamma ^2{N_I } / {N_0 }}\exp \left( {-\frac{{E_b } / {\gamma N_0 }-1}{2\sigma ^2{N_I } / {N_0 }}} \right) \end{aligned}$$
(29)

\(Q\left( x \right)\) can be expressed as (Goldsmith 2005):

$$\begin{aligned} Q\left( x \right) =\frac{1}{\pi }\int _0^{\pi / 2} {\exp \left( {\frac{-x^2}{2\sin ^2\varphi }} \right) d\varphi } \end{aligned}$$
(30)

In accordance with the literature (Goldsmith 2005), the average BER of QPSK modulation is:

$$\begin{aligned} p_{b,n} =\frac{1}{\pi }\int _0^{\pi / 2} {\int _0^\infty {\exp \left( {\frac{-\gamma ^2}{\sin ^2\varphi }} \right) p\left( \gamma \right) d\gamma d\varphi } } \end{aligned}$$
(31)

Substituting Formula (29) into Formula (31) gives:

$$\begin{aligned} p_{b,n} =\frac{1}{\pi }\int _0^{\pi / 2} {\int _0^{{E_b } / {N_0 }} {\frac{{E_b } / {N_0 }}{2\sigma ^2\gamma ^2{N_I } / {N_0 }}\exp \left( {\frac{-\gamma ^2}{\sin ^2\varphi }} \right) \times } } \exp \left( {-\frac{{E_b } / {\gamma N_0 }-1}{2\sigma ^2{N_I } / {N_0 }}} \right) d\gamma d\varphi \end{aligned}$$
(32)

Appendix 3: Parameter design table

1. Solutions in Case 1

(1) Parameter optimisation result

See Table 6.

Table 6 Parameter optimisation results of different algorithms in Case 1

(2) Sketch maps

See Fig. 11.

Fig. 11
figure 11

Parameter optimisation result of evolutionary algorithm in Case 1 (the red and blue rectangles represent the interference transmitter and communication receiver and the short line indicates the antenna direction)

2. Solutions in Case 2

(1) Parameter optimisation result

See Table 7.

Table 7 Parameter optimisation results of different algorithms in Case 2

(2) Sketch maps

See Fig. 12.

Fig. 12
figure 12

Parameter optimisation results of evolutionary algorithms in Case 2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Li, M., Liu, X. et al. Multi-source, multi-object and multi-domain (M-SOD) electromagnetic interference system optimised by intelligent optimisation approaches. Nat Comput 19, 713–732 (2020). https://doi.org/10.1007/s11047-019-09728-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-019-09728-8

Keywords

Navigation