Natural Computing

, Volume 17, Issue 4, pp 811–822 | Cite as

Ecological effects of cellular computing in microbial populations

  • Maia Baskerville
  • Arielle Biro
  • Mike Blazanin
  • Chang-Yu Chang
  • Amelia Hallworth
  • Nicole Sonnert
  • Jean C. C. Vila
  • Alvaro SanchezEmail author


Gene regulatory networks allow single cells to adopt a wide range of different phenotypes in response to changes in environmental conditions. The ecological implications of these cellular computations are poorly understood, and they are largely absent from models of microbial community assembly. Here, we highlight a number of examples where ecological interactions are or may be affected by cellular computations. Our review identifies specific opportunities for integrating cellular decision-making into mathematical models of microbe-microbe interactions and community assembly. We argue that incorporating cellular decision-making into microbial ecology will be critical in order to gain a quantitative understanding of microbial biogeography.


Cellular computations Cellular decision-making Microbial interactions Microbial communities Microbial ecology 


  1. Acar M, Mettetal JT, van Oudenaarden A (2008) Stochastic switching as a survival strategy in fluctuating environments. Nat Genet 40:471–475CrossRefGoogle Scholar
  2. Ahmer BMM, Gunn JS (2011) Interaction of Salmonella spp. with the Intestinal Microbiota. Front Microbiol 2:101CrossRefGoogle Scholar
  3. Aidelberg G, Towbin BD, Rothschild D et al (2014) Hierarchy of non-glucose sugars in Escherichia coli. BMC Syst Biol 8:133CrossRefGoogle Scholar
  4. Arnoldini M, Vizcarra IA, Peña-Miller R et al (2014) Bistable expression of virulence genes in salmonella leads to the formation of an antibiotic-tolerant subpopulation. PLoS Biol 12:e1001928CrossRefGoogle Scholar
  5. Axelrod K, Sanchez A, Gore J (2015) Phenotypic states become increasingly sensitive to perturbations near a bifurcation in a synthetic gene network. Elife 4:e07935. CrossRefGoogle Scholar
  6. Barrick JE, Lenski RE (2013) Genome dynamics during experimental evolution. Nat Rev Genet 14:827–839CrossRefGoogle Scholar
  7. Bashan A, Gibson TE, Friedman J et al (2016) Universality of human microbial dynamics. Nature 534:259–262CrossRefGoogle Scholar
  8. Beardmore RE, Gudelj I, Lipson DA, Hurst LD (2011) Metabolic trade-offs and the maintenance of the fittest and the flattest. Nature 472:342–346CrossRefGoogle Scholar
  9. Beisel CL, Afroz T (2015) Rethinking the hierarchy of sugar utilization in bacteria. J Bacteriol 198:374–376CrossRefGoogle Scholar
  10. Blount ZD, Borland CZ, Lenski RE (2008) Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. Proc Natl Acad Sci U S A 105:7899–7906CrossRefGoogle Scholar
  11. Blount ZD, Barrick JE, Davidson CJ, Lenski RE (2012) Genomic analysis of a key innovation in an experimental Escherichia coli population. Nature 489:513–518CrossRefGoogle Scholar
  12. Bohannan BJM, Kerr B, Jessup CM et al (2002) Trade-offs and coexistence in microbial microcosms. Antonie Van Leeuwenhoek 81:107–115CrossRefGoogle Scholar
  13. Cavaliere M, Sanchez A (2016) The evolutionary resilience of distributed cellular computing. In: Membrane computing. Springer, Cham, pp 3–15CrossRefGoogle Scholar
  14. Chen A, Sanchez A, Dai L, Gore J (2014) Dynamics of a producer-freeloader ecosystem on the brink of collapse. Nat Commun 5:3713CrossRefGoogle Scholar
  15. Chesson P (1990) MacArthur’s consumer-resource model. Theor Popul Biol 37:26–38MathSciNetCrossRefGoogle Scholar
  16. Desai TA, Rao CV (2010) Regulation of arabinose and xylose metabolism in Escherichia coli. Appl Environ Microbiol 76:1524–1532CrossRefGoogle Scholar
  17. Diard M, Garcia V, Maier L et al (2013) Stabilization of cooperative virulence by the expression of an avirulent phenotype. Nature 494:353–356CrossRefGoogle Scholar
  18. Diard M, Sellin ME, Dolowschiak T et al (2014) Antibiotic treatment selects for cooperative virulence of Salmonella typhimurium. Curr Biol 24:2000–2005CrossRefGoogle Scholar
  19. Dickens B, Fisher CK, Mehta P (2016) Analytically tractable model for community ecology with many species. Phys Rev E 94:022423CrossRefGoogle Scholar
  20. Escalante-Chong R, Savir Y, Carroll SM et al (2015) Galactose metabolic genes in yeast respond to a ratio of galactose and glucose. Proc Natl Acad Sci U S A 112:1636–1641CrossRefGoogle Scholar
  21. Friesen ML, Saxer G, Travisano M, Doebeli M (2004) Experimental evidence for sympatric ecological diversification due to frequency-dependent competition in Escherichia coli. Evolution 58:245–260CrossRefGoogle Scholar
  22. Goldford JE, Lu N, Bajic D et al (2018) Emergent simplicity in microbial community assembly. Science 361:469–474CrossRefGoogle Scholar
  23. Granados AA, Crane MM, Montano-Gutierrez LF et al (2017) Distributing tasks via multiple input pathways increases cellular survival in stress. Elife 6:e21415. CrossRefGoogle Scholar
  24. Gutiérrez M, Gregorio-Godoy P, Pérez Del Pulgar G et al (2017) A new improved and extended version of the multicell bacterial simulator gro. ACS Synth Biol 6:1496–1508CrossRefGoogle Scholar
  25. Hall EK, Singer GA, Kainz MJ, Lennon JT (2010) Evidence for a temperature acclimation mechanism in bacteria: an empirical test of a membrane-mediated trade-off. Funct Ecol 24:898–908CrossRefGoogle Scholar
  26. Harcombe WR, Delaney NF, Leiby N et al (2013) The ability of flux balance analysis to predict evolution of central metabolism scales with the initial distance to the optimum. PLoS Comput Biol 9:e1003091MathSciNetCrossRefGoogle Scholar
  27. Harrington KI, Sanchez A (2014) Eco-evolutionary dynamics of complex social strategies in microbial communities. Commun Integr Biol 7:e28230CrossRefGoogle Scholar
  28. Herron MD, Doebeli M (2013) Parallel evolutionary dynamics of adaptive diversification in Escherichia coli. PLoS Biol 11:e1001490CrossRefGoogle Scholar
  29. Hilker M, Schwachtje J, Baier M et al (2016) Priming and memory of stress responses in organisms lacking a nervous system. Biol Rev Camb Philos Soc 91:1118–1133CrossRefGoogle Scholar
  30. Høyland-Kroghsbo NM, Maerkedahl RB, Svenningsen SL (2013) A quorum-sensing-induced bacteriophage defense mechanism. MBio 4:e00362–12CrossRefGoogle Scholar
  31. Jang SS, Oishi KT, Egbert RG, Klavins E (2012) Specification and simulation of synthetic multicelled behaviors. ACS Synth Biol 1:365–374CrossRefGoogle Scholar
  32. Koirala S, Wang X, Rao CV (2015) Reciprocal regulation of l-arabinose and d-xylose metabolism in Escherichia coli. J Bacteriol 198:386–393CrossRefGoogle Scholar
  33. Kotte O, Volkmer B, Radzikowski JL, Heinemann M (2014) Phenotypic bistability in Escherichia coli’s central carbon metabolism. Mol Syst Biol 10:736CrossRefGoogle Scholar
  34. Lawley TD, Bouley DM, Hoy YE et al (2008) Host transmission of Salmonella enterica serovar Typhimurium is controlled by virulence factors and indigenous intestinal microbiota. Infect Immun 76:403–416CrossRefGoogle Scholar
  35. Le Gac M, Brazas MD, Bertrand M et al (2008) Metabolic changes associated with adaptive diversification in Escherichia coli. Genetics 178:1049–1060CrossRefGoogle Scholar
  36. Leiby N, Marx CJ (2014) Metabolic erosion primarily through mutation accumulation, and not tradeoffs, drives limited evolution of substrate specificity in Escherichia coli. PLoS Biol 12:e1001789CrossRefGoogle Scholar
  37. Levine JM, Bascompte J, Adler PB, Allesina S (2017) Beyond pairwise mechanisms of species coexistence in complex communities. Nature 546:56–64CrossRefGoogle Scholar
  38. Li G, Kesler BK, Thiemicke A et al (2017) Linearly changing stress environment causes cellular growth phenotype. bioRxiv 155267Google Scholar
  39. Litchman E, Klausmeier CA, Schofield OM, Falkowski PG (2007) The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. Ecol Lett 10:1170–1181CrossRefGoogle Scholar
  40. Litchman E, Edwards KF, Klausmeier CA (2015) Microbial resource utilization traits and trade-offs: implications for community structure, functioning, and biogeochemical impacts at present and in the future. Front Microbiol 6:254CrossRefGoogle Scholar
  41. Mayfield MM, Stouffer DB (2017) Higher-order interactions capture unexplained complexity in diverse communities. Nat Ecol Evol 1:62CrossRefGoogle Scholar
  42. Mehta P, Schwab DJ (2012) Energetic costs of cellular computation. Proc Natl Acad Sci U S A 109:17978–17982CrossRefGoogle Scholar
  43. Mitchell A, Pilpel Y (2011) A mathematical model for adaptive prediction of environmental changes by microorganisms. Proc Natl Acad Sci U S A 108:7271–7276CrossRefGoogle Scholar
  44. Mitchell A, Romano GH, Groisman B et al (2009) Adaptive prediction of environmental changes by microorganisms. Nature 460:220–224CrossRefGoogle Scholar
  45. Mitchell A, Wei P, Lim WA (2015) Oscillatory stress stimulation uncovers an Achilles’ heel of the yeast MAPK signaling network. Science 350:1379–1383CrossRefGoogle Scholar
  46. Monod J (1949) The growth of bacterial cultures. Annu Rev Microbiol 3:371–394CrossRefGoogle Scholar
  47. Monod J (1966) From enzymatic adaptation to allosteric transitions. Science 154:475–483CrossRefGoogle Scholar
  48. New AM, Cerulus B, Govers SK et al (2014) Different levels of catabolite repression optimize growth in stable and variable environments. PLoS Biol 12:e1001764CrossRefGoogle Scholar
  49. Perkins TJ, Swain PS (2009) Strategies for cellular decision-making. Mol Syst Biol 5:326CrossRefGoogle Scholar
  50. Pos KM, Dimroth P, Bott M (1998) The Escherichia coli citrate carrier CitT: a member of a novel eubacterial transporter family related to the 2-oxoglutarate/malate translocator from spinach chloroplasts. J Bacteriol 180:4160–4165Google Scholar
  51. Posfai A, Taillefumier T, Wingreen NS (2017) Metabolic trade-offs promote diversity in a model ecosystem. Phys Rev Lett 118:028103CrossRefGoogle Scholar
  52. Qin X, Sun Q, Yang B et al (2017) Quorum sensing influences phage infection efficiency via affecting cell population and physiological state. J Basic Microbiol 57:162–170CrossRefGoogle Scholar
  53. Quandt EM, Gollihar J, Blount ZD et al (2015) Fine-tuning citrate synthase flux potentiates and refines metabolic innovation in the Lenski evolution experiment. Elife 4:e09696. CrossRefGoogle Scholar
  54. Ranea JAG, Grant A, Thornton JM, Orengo CA (2005) Microeconomic principles explain an optimal genome size in bacteria. Trends Genet 21:21–25CrossRefGoogle Scholar
  55. Regot S, Macia J, Conde N et al (2011) Distributed biological computation with multicellular engineered networks. Nature 469:207–211CrossRefGoogle Scholar
  56. Rillig MC, Rolff J, Tietjen B et al (2015) Community priming—effects of sequential stressors on microbial assemblages. FEMS Microbiol Ecol. CrossRefGoogle Scholar
  57. Robert L, Paul G, Chen Y et al (2010) Pre-dispositions and epigenetic inheritance in the Escherichia coli lactose operon bistable switch. Mol Syst Biol 6:357CrossRefGoogle Scholar
  58. Rojo F (2010) Carbon catabolite repression in Pseudomonas: optimizing metabolic versatility and interactions with the environment. FEMS Microbiol Rev 34:658–684CrossRefGoogle Scholar
  59. Sanchez A, Gore J (2013) Feedback between population and evolutionary dynamics determines the fate of social microbial populations. PLoS Biol 11:e1001547CrossRefGoogle Scholar
  60. Sani E, Herzyk P, Perrella G et al (2013) Hyperosmotic priming of Arabidopsis seedlings establishes a long-term somatic memory accompanied by specific changes of the epigenome. Genome Biol 14:R59CrossRefGoogle Scholar
  61. Shank EA, Klepac-Ceraj V, Collado-Torres L et al (2011) Interspecies interactions that result in Bacillus subtilis forming biofilms are mediated mainly by members of its own genus. Proc Natl Acad Sci U S A 108:E1236–43CrossRefGoogle Scholar
  62. Singh KD, Schmalisch MH, Stülke J, Görke B (2008) Carbon catabolite repression in Bacillus subtilis: quantitative analysis of repression exerted by different carbon sources. J Bacteriol 190:7275–7284CrossRefGoogle Scholar
  63. Skerker JM, Perchuk BS, Siryaporn A et al (2008) Rewiring the specificity of two-component signal transduction systems. Cell 133:1043–1054CrossRefGoogle Scholar
  64. Spencer CC, Bertrand M, Travisano M, Doebeli M (2007) Adaptive diversification in genes that regulate resource use in Escherichia coli. PLoS Genet 3:e15CrossRefGoogle Scholar
  65. Stein RR, Bucci V, Toussaint NC et al (2013) Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota. PLoS Comput Biol 9:e1003388CrossRefGoogle Scholar
  66. Tagkopoulos I, Liu Y-C, Tavazoie S (2008) Predictive behavior within microbial genetic networks. Science 320:1313–1317CrossRefGoogle Scholar
  67. Tan D, Dahl A, Middelboe M (2015) Vibriophages differentially influence biofilm formation by Vibrio anguillarum strains. Appl Environ Microbiol 81:4489–4497CrossRefGoogle Scholar
  68. Taylor TB, Mulley G, Dills AH et al (2015) Evolution. evolutionary resurrection of flagellar motility via rewiring of the nitrogen regulation system. Science 347:1014–1017CrossRefGoogle Scholar
  69. Thiennimitr P, Winter SE, Winter MG et al (2011) Intestinal inflammation allows Salmonella to use ethanolamine to compete with the microbiota. Proc Natl Acad Sci U S A 108:17480–17485CrossRefGoogle Scholar
  70. Toll-Riera M, San Millan A, Wagner A, MacLean RC (2016) The genomic basis of evolutionary innovation in Pseudomonas aeruginosa. PLoS Genet 12:e1006005CrossRefGoogle Scholar
  71. Turkarslan S, Reiss DJ, Gibbins G et al (2011) Niche adaptation by expansion and reprogramming of general transcription factors. Mol Syst Biol 7:554CrossRefGoogle Scholar
  72. Turner CB, Blount ZD, Mitchell DH, Lenski RE (2015) Evolution and coexistence in response to a key innovation in a long-term evolution experiment with Escherichia coli. bioRxiv 020958Google Scholar
  73. van Nimwegen E (2003) Scaling laws in the functional content of genomes. Trends Genet 19:479–484CrossRefGoogle Scholar
  74. Venturelli OS, Zuleta I, Murray RM, El-Samad H (2015) Population diversification in a yeast metabolic program promotes anticipation of environmental shifts. PLoS Biol 13:e1002042CrossRefGoogle Scholar
  75. Wang J, Atolia E, Hua B et al (2015) Natural variation in preparation for nutrient depletion reveals a cost-benefit tradeoff. PLoS Biol 13:e1002041CrossRefGoogle Scholar
  76. Xie L, Wu X-L (2014) Bacterial motility patterns reveal importance of exploitation over exploration in marine microhabitats. Part I: theory. Biophys J 107:1712–1720CrossRefGoogle Scholar
  77. Yawata Y, Cordero OX, Menolascina F et al (2014) Competition-dispersal tradeoff ecologically differentiates recently speciated marine bacterioplankton populations. Proc Natl Acad Sci U S A 111:5622–5627CrossRefGoogle Scholar
  78. Yi X, Dean AM (2016) Phenotypic plasticity as an adaptation to a functional trade-off. Elife 5:e19307. CrossRefGoogle Scholar
  79. Young JW, Locke JCW, Elowitz MB (2013) Rate of environmental change determines stress response specificity. Proc Natl Acad Sci U S A 110:4140–4145CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Graduate Program in MicrobiologyYale UniversityNew HavenUSA
  2. 2.Department of Ecology and Evolutionary BiologyYale UniversityNew HavenUSA
  3. 3.Microbial Sciences InstituteYale UniversityNew HavenUSA

Personalised recommendations