Natural Computing

, Volume 17, Issue 1, pp 147–160 | Cite as

Design methods for 3D wireframe DNA nanostructures

  • Pekka Orponen


The field of structural DNA nanotechnology aims at the systematic development of self-assembling nanostructures using DNA as the construction material. Research in this area is progressing rapidly, and the controlled, computer-aided design of increasingly complex structures is becoming feasible. One thread of this endeavour is the design and characterisation of self-assembling 3D nanostructures based on wireframe polyhedral models. This article aims to illustrate some of the key developments in this direction, in sufficient detail so that the reader can achieve a general understanding of the main concepts and approaches. The emphasis is on the design principles rather than experimental methodology, and the role of computer science and computational tools is set forth.


DNA nanotechnology DNA origami Self-assembly 3D nanostructures Wireframe models 



Preparing this survey was made possible by a sabbatical leave from Aalto University, and most of it was written during stays at ETH Zürich (host Prof. Roger Wattenhofer), the University of Electro-Communications in Tokyo (host Prof. Shinnosuke Seki) and the Tokyo Institute of Technology (host Prof. Osamu Watanabe). I am very grateful for this opportunity. I also thank the two anonymous reviewers for their constructive and insightful comments.


  1. Benson E, Mohammed A, Gardell J et al (2015) DNA rendering of polyhedral meshes at the nanoscale. Nature 523:441–444. doi: 10.1038/nature14586 CrossRefGoogle Scholar
  2. Brenneman A, Condon A (2002) Strand design for biomolecular computation. Nat Comput 287:39–58. doi: 10.1016/S0304-3975(02)00135-4 MathSciNetzbMATHGoogle Scholar
  3. Chandrasekaran AR, Anderson N, Kizer M et al (2016a) Beyond the fold: emerging biological applications of DNA origami. ChemBioChem 17:1081–1089. doi: 10.1002/cbic.201600038 CrossRefGoogle Scholar
  4. Chandrasekaran AR, Pushpanathan M, Halvorsen K (2016b) Evolution of DNA origami scaffolds. Mater Lett 170:221–224. doi: 10.1016/j.matlet.2016.01.161 CrossRefGoogle Scholar
  5. Chen J, Seeman NC (1991) Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350:631–633. doi: 10.1038/350631a0 CrossRefGoogle Scholar
  6. Cooper JP, Hagerman PJ (1987) Gel electrophoretic analysis of the geometry of a DNA four-way junction. J Mol Biol 198:711–719. doi: 10.1016/0022-2836(87)90212-9 CrossRefGoogle Scholar
  7. Cormen TH, Leiserson CE, Rivest RL, Stein C (2009) Introduction to algorithms, 3rd edn. MIT Press, CambridgezbMATHGoogle Scholar
  8. Cromwell PR (1999) Polyhedra. Cambridge University Press, CambridgezbMATHGoogle Scholar
  9. Diestel R (2017) Graph theory, 5th edn. Springer, BerlinCrossRefzbMATHGoogle Scholar
  10. Dietz H, Douglas SM, Shih WM (2009) Folding DNA into twisted and curved nanoscale shapes. Science 325:725. doi: 10.1126/science.1174251 CrossRefGoogle Scholar
  11. Dirks RM, Lin M, Winfree E, Pierce NA (2004) Paradigms for computational nucleic acid design. Nucleic Acids Res 32:1392–1403. doi: 10.1093/nar/gkh291 CrossRefGoogle Scholar
  12. Douglas SM, Dietz H, Liedl T et al (2009) Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459:414–418. doi: 10.1038/nature08016 CrossRefGoogle Scholar
  13. Døvling Andersen L, Fleischner H (1995) The NP-completeness of finding A-trails in Eulerian graphs and of finding spanning trees in hypergraphs. Discrete Appl Math 59:203–214. doi: 10.1016/0166-218X(95)80001-K MathSciNetCrossRefzbMATHGoogle Scholar
  14. Edmonds J (1965) Paths, trees, and flowers. Can J Math 17:449–467. doi: 10.4153/CJM-1965-045-4 MathSciNetCrossRefzbMATHGoogle Scholar
  15. Ellis-Monaghan JA, McDowell A, Moffatt I, Pangborn G (2015) DNA origami and the complexity of Eulerian circuits with turning costs. Nat Comput 14:491–503. doi: 10.1007/s11047-014-9457-2 MathSciNetCrossRefGoogle Scholar
  16. Ellis-Monaghan JA, Pangborn G, Seeman NC et al (2017) Design tools for reporter strands and DNA origami scaffold strands. Theor Comput Sci 671:69–78. doi: 10.1016/j.tcs.2016.10.007 MathSciNetCrossRefzbMATHGoogle Scholar
  17. Euler L (1741) Solutio problematis ad geometriam situs pertinentis. Comment Acad Sci Petropolitanae 8:128–140Google Scholar
  18. Feldkamp U, Niemeyer CM (2006) Rational design of DNA nanoarchitectures. Angew Chem Int Ed 45:1856–1876. doi: 10.1002/anie.200502358 CrossRefGoogle Scholar
  19. Fleischner H (1990) Eulerian graphs and related topics. Elsevier North Holland, AmsterdamzbMATHGoogle Scholar
  20. Fu TJ, Seeman NC (1993) DNA double-crossover molecules. Biochemistry (Mosc) 32:3211–3220. doi: 10.1021/bi00064a003 CrossRefGoogle Scholar
  21. Gibson DG, Young L, Chuang R-Y et al (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345. doi: 10.1038/nmeth.1318 CrossRefGoogle Scholar
  22. Gibson DG, Smith HO, Hutchison CA et al (2010) Chemical synthesis of the mouse mitochondrial genome. Nat Methods 7:901–903. doi: 10.1038/nmeth.1515 CrossRefGoogle Scholar
  23. Goodman RP, Berry RM, Turberfield AJ (2004) The single-step synthesis of a DNA tetrahedron. Chem Commun 40:1372–1373. doi: 10.1039/B402293A CrossRefGoogle Scholar
  24. Goodman RP, Schaap IAT, Tardin CF et al (2005) Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 310:1661. doi: 10.1126/science.1120367 CrossRefGoogle Scholar
  25. Gür FN, Schwarz FW, Ye J et al (2016) Toward self-assembled plasmonic devices: high-yield arrangement of gold nanoparticles on DNA origami templates. ACS Nano 10:5374–5382. doi: 10.1021/acsnano.6b01537 CrossRefGoogle Scholar
  26. Han D, Pal S, Nangreave J et al (2011) DNA origami with complex curvatures in three-dimensional space. Science 332:342. doi: 10.1126/science.1202998 CrossRefGoogle Scholar
  27. Han D, Pal S, Yang Y et al (2013) DNA gridiron nanostructures based on four-arm junctions. Science 339:1412. doi: 10.1126/science.1232252 CrossRefGoogle Scholar
  28. He Y, Chen Y, Liu H et al (2005) Self-assembly of hexagonal DNA two-dimensional (2D) arrays. J Am Chem Soc 127:12202–12203. doi: 10.1021/ja0541938 CrossRefGoogle Scholar
  29. He Y, Ye T, Su M et al (2008) Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature 452:198–201. doi: 10.1038/nature06597 CrossRefGoogle Scholar
  30. Hughes RA, Ellington AD (2017) Synthetic DNA synthesis and assembly: putting the synthetic in synthetic biology. Cold Spring Harb Perspect Biol. doi: 10.1101/cshperspect.a023812 Google Scholar
  31. Iinuma R, Ke Y, Jungmann R et al (2014) Polyhedra self-assembled from DNA tripods and characterized with 3D DNA-PAINT. Science 344:65. doi: 10.1126/science.1250944 CrossRefGoogle Scholar
  32. Kallenbach NR, Ma R-I, Seeman NC (1983) An immobile nucleic acid junction constructed from oligonucleotides. Nature 305:829–831. doi: 10.1038/305829a0 CrossRefGoogle Scholar
  33. Ke Y, Sharma J, Liu M et al (2009) Scaffolded DNA origami of a DNA tetrahedron molecular container. Nano Lett 9:2445–2447. doi: 10.1021/nl901165f CrossRefGoogle Scholar
  34. Ke Y, Ong LL, Shih WM, Yin P (2012) Three-dimensional structures self-assembled from DNA bricks. Science 338:1177. doi: 10.1126/science.1227268 CrossRefGoogle Scholar
  35. Klavžar S, Rus J (2013) Stable traces as a model for self-assembly of polypeptide nanoscale polyhedrons. MATCH Commun Math Comput Chem 70:317–330.
  36. Krishnan Y, Simmel FC (2011) Nucleic acid based molecular devices. Angew Chem Int Ed 50:3124–3156. doi: 10.1002/anie.200907223 CrossRefGoogle Scholar
  37. Kuzyk A, Schreiber R, Fan Z et al (2012) DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483:311–314. doi: 10.1038/nature10889 CrossRefGoogle Scholar
  38. Li X, Yang X, Qi J, Seeman NC (1996) Antiparallel DNA double crossover molecules as components for nanoconstruction. J Am Chem Soc 118:6131–6140. doi: 10.1021/ja960162o CrossRefGoogle Scholar
  39. Linko V, Nummelin S, Aarnos L et al (2016) DNA-based enzyme reactors and systems. Nanomaterials 6:139. doi: 10.3390/nano6080139 CrossRefGoogle Scholar
  40. Marchi AN, Saaem I, Vogen BN et al (2014) Toward larger DNA origami. Nano Lett 14:5740–5747. doi: 10.1021/nl502626s CrossRefGoogle Scholar
  41. Mohammed A, Hajij M (2017) Unknotted strand routings of triangulated meshes. In: Proceedings, 23rd international conference on DNA computing and molecular programming, pp 46–63. doi: 10.1007/978-3-319-66799-7_4
  42. Morse A, Adkisson W, Greene J et al (2017) DNA origami and unknotted A-trails in torus graphs.
  43. Pinheiro AV, Han D, Shih WM, Yan H (2011) Challenges and opportunities for structural DNA nanotechnology. Nat Nano 6:763–772. doi: 10.1038/nnano.2011.187 CrossRefGoogle Scholar
  44. Rothemund PWK (2006a) Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302. doi: 10.1038/nature04586 CrossRefGoogle Scholar
  45. Rothemund PWK (2006b) Scaffolded DNA origami: from generalized multicrossovers to polygonal networks. In: Chen J, Jonoska N, Rozenberg G (eds) Nanotechnology: science and computation. Springer, Berlin, pp 3–21. doi: 10.1007/3-540-30296-4_1
  46. Seeman NC (1981) Nucleic acid junctions: building blocks for genetic engineering in three dimensions. In: Sarma RH (ed) Biomolecular stereodynamics. Adenine Press, New York, pp 269–277Google Scholar
  47. Seeman NC (1982) Nucleic acid junctions and lattices. J Theor Biol 99:237–247. doi: 10.1016/0022-5193(82)90002-9 CrossRefGoogle Scholar
  48. Seeman NC (2001) DNA nicks and nodes and nanotechnology. Nano Lett 1:22–26. doi: 10.1021/nl000182v CrossRefGoogle Scholar
  49. Seeman NC (2010) Nanomaterials based on DNA. Annu Rev Biochem 79:65–87. doi: 10.1146/annurev-biochem-060308-102244 CrossRefGoogle Scholar
  50. Seeman NC (2015) Structural DNA nanotechnology. Cambridge University Press, CambridgeCrossRefzbMATHGoogle Scholar
  51. Seeman NC, Kallenbach NR (1983) Design of immobile nucleic acid junctions. Biophys J 44:201–209. doi: 10.1016/S0006-3495(83)84292-1 CrossRefGoogle Scholar
  52. Shih WM, Quispe JD, Joyce GF (2004) A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature 427:618–621. doi: 10.1038/nature02307 CrossRefGoogle Scholar
  53. Tian Y, Wang T, Liu W et al (2015) Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames. Nat Nano 10:637–644. doi: 10.1038/nnano.2015.105 CrossRefGoogle Scholar
  54. Veneziano R, Ratanalert S, Zhang K et al (2016) Designer nanoscale DNA assemblies programmed from the top down. Science. doi: 10.1126/science.aaf4388 Google Scholar
  55. Zhang Y, Seeman NC (1994) Construction of a DNA-truncated octahedron. J Am Chem Soc 116:1661–1669. doi: 10.1021/ja00084a006 CrossRefGoogle Scholar
  56. Zhang C, Su M, He Y et al (2008) Conformational flexibility facilitates self-assembly of complex DNA nanostructures. Proc Natl Acad Sci 105:10665–10669. doi: 10.1073/pnas.0803841105 CrossRefGoogle Scholar
  57. Zhang F, Nangreave J, Liu Y, Yan H (2014) Structural DNA nanotechnology: state of the art and future perspective. J Am Chem Soc 136:11198–11211. doi: 10.1021/ja505101a CrossRefGoogle Scholar
  58. Zhang F, Jiang S, Wu S et al (2015) Complex wireframe DNA origami nanostructures with multi-arm junction vertices. Nat Nano 10:779–784. doi: 10.1038/nnano.2015.162 CrossRefGoogle Scholar
  59. Zhao Z, Fu J, Dhakal S et al (2016) Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion. Nat Commun 7:10619. doi: 10.1038/ncomms10619 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceAalto UniversityAaltoFinland

Personalised recommendations