Advertisement

Natural Computing

, Volume 17, Issue 3, pp 569–583 | Cite as

Shoreline evolution: GIS, remote sensing and cellular automata modelling

  • A. Seghir
  • O. Marcou
  • S. El Yacoubi
Article
  • 206 Downloads

Abstract

The evolution and more particularly the erosion of the coasts morphology is an important environmental subject. Both the study of the actual evolution of coasts via digital tools and their modelling for the sake of prediction are necessary. A study of the evolution of a section of the Algerian coastline with a geographical information system shows that erosion is the main factor for the shoreline evolution, in the absence of structures consolidating the beaches. Therefore, a qualitative numerical model of the erosion of a coastline is proposed. It relies on a coupling between a cellular automata sedimentation model and a bi-fluid hydrodynamical model based on the Lattice Boltzmann method. The current model is two-dimensional and simulates a cross-section of a virtual coastline. The virtual coastline exhibits a gradual erosion by the water, whose speed depends on the kind of perturbation applied on the water level.

Keywords

Cellular automata Lattice Boltzmann Shoreline GIS 

References

  1. Aidun CK, Clausen JR (2010) Lattice-Boltzmann method for complex flows. Annu Rev Fluid Mech 42:439–472MathSciNetCrossRefzbMATHGoogle Scholar
  2. Avolio MV, Calidonna CR, Delle Rose M, Di Gregorio S, Lupiano V, Pagliara TM, Sempreviva AM (2012) A cellular automata model for soil erosion by water. In: Proceedings of ACRI 2012, Springer, Berlin, Heidelberg, vol LCNS 7495, pp 273–278Google Scholar
  3. Benzi R, Succi S, Vergassola M (1992) The lattice Boltzmann equation: theory and applications. Phys Rep 222:145–197CrossRefGoogle Scholar
  4. Bhatnager P, Gross E, Krook M (1954) A model for collision process in gases. Phys Rev 94:511CrossRefGoogle Scholar
  5. Bordins P (2002) SIG: concepts, outils et données. Lavoisier, CachanGoogle Scholar
  6. Calidonna CR, Di Gregorio S, Gullace F, Gull D, Lupiano V (2016) Rusica initial implementations: simulation results of sandy shore evolution in Porto Cesareo, Italy. In: AIP conference proceedings, vol 1738(1), pp 480103. doi: 10.1063/1.4952339
  7. Chen S, Doolen G (1998) Lattice Boltzmann method for fluid flows. Ann Rev Fluid Mech 30:329–364MathSciNetCrossRefGoogle Scholar
  8. Chopard B, Droz M (1998) Lattice-gas cellular automata and lattice Boltzmann models: an introduction. Cambridge University Press, CambridgezbMATHGoogle Scholar
  9. Chopard B, Luthi P, Masselot A, Dupuis A (2002) Cellular automata and lattice Boltzmann techniques: an approach to model and simulate complex systems. Adv Complex Syst 5–2:103–242MathSciNetCrossRefzbMATHGoogle Scholar
  10. Coulthard TJ, Hicks DM, Wiel MJVD (2007) Cellular modelling of river catchments and reaches: advantages, limitations and prospects. Geomorphology 90:192–207CrossRefGoogle Scholar
  11. Dagorne A (1970) Remarques préliminaires sur la sédimentation pré-littorale en baie de Bou-Ismail (Ouest Alger). Ann algériens de géographie 7:73–78Google Scholar
  12. D’Ambrosio D, Gregorio SD, Gabriele S, Gaudio R (2001) A cellular automata model for soil erosion by water. Phys Chem Earth Part B Hydrol Oceans Atmos 26(1):33–39CrossRefGoogle Scholar
  13. Dearing JA, Richmond N, Plater AJ, Wolf J, Prandle D, Coulthard TJ (2006) Modelling approaches for coastal simulation based on cellular automata: the need and potential. Phil Trans R Soc A 364:1051–1071CrossRefGoogle Scholar
  14. Ginzburg I (2005) Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation. Adv Water Resour 28(11):1171–1195CrossRefGoogle Scholar
  15. Ginzburg I (2007) Lattice Boltzmann modeling with discontinuous collision components: hydrodynamic and advection–diffusion equations. J Stat Phys 126–1:157–206MathSciNetCrossRefzbMATHGoogle Scholar
  16. Ginzburg I, Steiner K (2003) Lattice Boltzmann model for free-surface flow and its application to filling process in casting. J Comp Phys 185:61–99MathSciNetCrossRefzbMATHGoogle Scholar
  17. Hawick KA (2014) Modelling flood incursion and coastal erosion using cellular automata simulations. In: Proceedings of IASTED international conference on environmental management and engineering, IASTED, Banff, Canada, pp 1–8. URL http://www.hull.ac.uk/php/466990/csi/reports/0007/csi-0007.html
  18. He X, Zou Q (1995) Analysis and boundary condition of the lattice Boltzmann BGK model with two velocities components. Los Alamos preprint, LA-UR-95-2293Google Scholar
  19. Körner C, Pohl T, Rüde U, Thürey N, Hofmann T (2004) Lattice Boltzmann methods with free surfaces and their application in material technology. Technical report, Friedrich-Alexander-Universität Erlangen-Nürnberg—Institüt Fur Informatik (Mathematische Maschinen und Datenverarbeitung)Google Scholar
  20. Körner C, Thies M, Hofmann T, Thürey N, Rüde U (2005) Lattice Boltzmann model for free surface flow for modeling foaming. J Stat Phys 121(1–2):179–196Google Scholar
  21. Lätt J (2007) Hydrodynamic limit of lattice Boltzmann equations. Ph.D. thesis, University of Geneva, Switzerland. URL http://www.unige.ch/cyberdocuments/theses2007/LattJ/meta.html
  22. Lätt J, Chopard B, Malaspinas O, Deville M, Michler A (2008) Straight velocity boundaries in the lattice Boltzmann method. Phys Rev E 77:056703CrossRefGoogle Scholar
  23. Luo W (2001) Landsap: a coupled surface and subsurface cellular automata model for landform simulation. Comput Geosci 27:363–367CrossRefGoogle Scholar
  24. Marcou O, El Yacoubi S, Chopard B (2006) A bi-fluid lattice Boltzmann model for water flow in an irrigation channel. In: Proceedings of ACRI 2006, Springer, pp 373–382Google Scholar
  25. Marcou O, Chopard B, El Yacoubi S (2007) Modeling of irrigation canals: a comparative study. Int J Mod Phys C 18(4):739–748CrossRefzbMATHGoogle Scholar
  26. Marcou O, Chopard B, El Yacoubi S, Hamroun B, Lefèvre L, Mendes E (2010) A lattice Boltzmann model for the simulation of flows in open channels with applications to flows in a submerged sluice gate. J Irrig Drain Eng 136(12):809–822. URL https://hal.archives-ouvertes.fr/hal-00580892
  27. Marcou O, Chopard B, El Yacoubi S, Hamroun B, Mendes E, Lefèvre L (2013) A lattice Boltzmann model to study sedimentation phenomena in irrigation canals. Commun Comput Phys 13:880–899CrossRefGoogle Scholar
  28. Mennad M (2008) Approche des systèmes d’information géographique (SIG) pour l’analyse spatio-temporelle de la pollution marine des eaux côtières. Application à la baie d’Alger. Ph.D. thesis, Université des Sciences et de la Technologie Houari BoumedièneGoogle Scholar
  29. Succi S (2001) The lattice Boltzmann equation, for fluid dynamics and beyond. Oxford University Press, OxfordzbMATHGoogle Scholar
  30. Sukop M, Thorne D (2005) Lattice Boltzmann modeling: an introduction for geoscientists and engineers. Springer, BerlinGoogle Scholar
  31. Wolf-Gladrow DA (2000) Lattice-gas cellular automata and lattice Boltzmann models: an introduction. Lecture notes in mathematics. Springer, BerlinCrossRefzbMATHGoogle Scholar
  32. Yuan L (2008) A soil erosion model based on cellular automata. Int Arch Photogramm Remote Sens Spat Inf Sci 37(B6b):21–26Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.University of Oran 1 Ahmed Ben BellaOranAlgeria
  2. 2.Team Project IMAGES_ESPACE-Dev, UMR 228 Espace-Dev IRD UM UG URUniversity of Perpignan Via DomitiaPerpignan CedexFrance

Personalised recommendations