Advertisement

Natural Computing

, Volume 17, Issue 3, pp 479–486 | Cite as

Toward a boundary regional control problem for Boolean cellular automata

  • Franco Bagnoli
  • Samira El Yacoubi
  • Raúl Rechtman
Article

Abstract

An important question to be addressed regarding system control on a time interval [0, T] is whether some particular target state in the configuration space is reachable from a given initial state. When the target of interest refers only to a portion of the spatial domain, we speak about regional analysis. Cellular automata approach have been recently promoted for the study of control problems on spatially extended systems for which the classical approaches cannot be used. An interesting problem concerns the situation where the subregion of interest is not interior to the domain but a portion of its boundary . In this paper we address the problem of regional controllability of cellular automata via boundary actions, i.e., we investigate the characteristics of a cellular automaton so that it can be controlled inside a given region only acting on the value of sites at its boundaries.

Keywords

Control theory Regional control Cellular automata Discrete systems 

Mathematics Subject Classification

34H10 37B15 49J21 

Notes

Acknowledgements

F.B. acknowledges partial financial support from CNR, short term mobility 2016 CUP B52F16001810005.

References

  1. Bagnoli F (1992) Boolean derivatives and computation of cellular automata. Int J Mod Phys C 3:307MathSciNetCrossRefzbMATHGoogle Scholar
  2. Bagnoli F (2015) Building preimages by backtracking. http://francobagnoli.complexworld.net/capreimages
  3. Bagnoli F, Rechtman R (1999) Synchronization and maximum Lyapunov exponents of cellular automata. Phys Rev E 59:R1307CrossRefzbMATHGoogle Scholar
  4. Bagnoli F, Rechtman R, Ruffo S (1994) Damage spreading and Lyapunov exponents in cellular automata. Phys Lett A 172:34CrossRefGoogle Scholar
  5. Bagnoli F, Rechtman R, El Yacoubi S (2012) Control of cellular automata. Phys Rev E 86:066201CrossRefzbMATHGoogle Scholar
  6. Bagnoli F, El Yacoubi S, Rechtman R (2016) Regional control of boolean cellular automata. In: El Yacoubi S, Wąs J, Bandini S (eds) ACRI: cellular automata for research and industry (Lectures notes in computer science), vol 9863. Springer, Berlin. doi: 10.1007/978-3-319-44365-2
  7. Bandini S, Chopard B, Tomassini M (eds) (2002) ACRI: cellular automata for research and industry. Lectures notes in computer science, vol 2493. Springer, BerlinGoogle Scholar
  8. Bandini S, Manzoni S, Umeo H, Vizzari G (eds) (2010) ACRI: cellular automata for research and industry. Lectures notes in computer science, vol 6350. Springer, BerlinGoogle Scholar
  9. Bel Fekih A, El Jai A (2006) Regional analysis of a class of cellular automata models. In: El Yacoubi S, Chopard B, Bandini S (eds) Cellular automata, proceedings of the 7th international conference on cellular automata, for research and industry (Lecture notes in computer science), vol 4173. Springer, Berlin, pp 48–57Google Scholar
  10. Damiani C, Serra R, Villani M, Kauffman SA, Colacci A (2011) Cell–cell interaction and diversity of emergent behaviours. IET Syst Biol 5:137CrossRefGoogle Scholar
  11. Deutsch A, Dormann S (2005) Cellular automaton modeling of biological pattern formation: characterization, applications, and analysis. Birkhüuser, BostonzbMATHGoogle Scholar
  12. El Jai A, Simon M, Zerrik E, Prirchard A (1995) Regional controllability of distributed parameter systems. Int J Control 62:1351–1365. doi: 10.1080/00207179508921603 MathSciNetCrossRefzbMATHGoogle Scholar
  13. El Yacoubi S, El Jai A, Ammor N (2002) Regional controllability with cellular automata models. In: Bandini S, Chopard B, Tomassini M (eds) ACRI 2002, proceedings of the 5th international conference on cellular automata for research and industry (Lecture notes on computer sciences), vol 2493. Springer, Berlin, pp 357–367Google Scholar
  14. El Yacoubi S, Chopard B, Bandini S (eds) (2006) ACRI: cellular automata for research and industry. Lectures notes in computer science, vol 4173. Springer, BerlinGoogle Scholar
  15. El Yacoubi S, Wąs J, Bandini S (eds) (2016) ACRI: cellular automata for research and industry. Lectures notes in computer science, vol 9863. Springer, Berlin. doi: 10.1007/978-3-319-44365-2 Google Scholar
  16. Ermentrout G, Edelstein-Keshet L (1993) Cellular automata approaches to biological modeling. J Theor Biol 160(1):97–133. doi: 10.1006/jtbi.1993.1007 CrossRefGoogle Scholar
  17. Kauffman SA (1969) Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 22:437MathSciNetCrossRefGoogle Scholar
  18. Lions J (1986) Controlabilité exacte des systémes distribueés. CRAS, Série I 302:471–475zbMATHGoogle Scholar
  19. Pecora L, Carroll T (1990) Synchronization in chaotic systems. Phys Rev Lett 64:821MathSciNetCrossRefzbMATHGoogle Scholar
  20. Russell D (1978) Controllability and stabilizability theory for linear partial differential equations. Recent progress and open questions. SIAM Rev 20:639–739MathSciNetCrossRefzbMATHGoogle Scholar
  21. Sirakoulis GC, Bandini S (eds) (2012) ACRI: cellular automata for research and industry. Lectures notes in computer science, vol 7495. Springer, Berlin. doi: 10.1007/978-3-642-33350-7 Google Scholar
  22. Sloot P, Chopard B, Hoekstra A (eds) (2004) ACRI: cellular automata for research and industry. Lectures notes in computer science, vol 3305. Springer, BerlinGoogle Scholar
  23. Umeo H, Morishita S, Nishinari K, Komatsuzaki T, Bandini S (eds) (2008) ACRI: cellular automata for research and industry. Lectures notes in computer science, vol 5191. Springer, BerlinGoogle Scholar
  24. Vichniac G (1990) Boolean derivatives on cellular automata. Physica D 45:63–74MathSciNetCrossRefzbMATHGoogle Scholar
  25. Wolfram S (1983) Statistical mechanics of cellular automata. Rev Mod Phys 55:601–644MathSciNetCrossRefzbMATHGoogle Scholar
  26. Wąs J, Sirakoulis GC, Bandini S (eds) (2014) ACRI: cellular automata for research and industry. Lectures notes in computer science, vol 8751. Springer, Berlin. doi: 10.1007/978-3-319-11520-7 Google Scholar
  27. Zerrik E, Boutoulout A, El Jai A (2000) Actuators and regional boundary controllability for parabolic systems. Int J Syst Sci 31:73–82CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Physics and Astronomy and CSDCUniversità di FirenzeSesto FiorentinoItaly
  2. 2.INFN, sez. Firenze and ISC-CNRFlorenceItaly
  3. 3.Team Project IMAGES_ESPACE-Dev, UMR 228 Espace-Dev IRD UM UG URUniversity of Perpignan Via DomitiaPerpignan CedexFrance
  4. 4.Instituto de Energías RenovablesUniversidad Nacional Autónoma de MéxicoTemixcoMexico

Personalised recommendations