Advertisement

Natural Computing

, Volume 15, Issue 4, pp 551–564 | Cite as

Monodirectional P systems

  • Alberto Leporati
  • Luca Manzoni
  • Giancarlo Mauri
  • Antonio E. Porreca
  • Claudio Zandron
Article

Abstract

We investigate the influence that the flow of information in membrane systems has on their computational complexity. In particular, we analyse the behaviour of P systems with active membranes where communication only happens from a membrane towards its parent, and never in the opposite direction. We prove that these “monodirectional P systems” are, when working in polynomial time and under standard complexity-theoretic assumptions, much less powerful than unrestricted ones: indeed, they characterise classes of problems defined by polynomial-time Turing machines with \({\mathbf{NP}}\) oracles, rather than the whole class \({\mathbf{PSPACE}}\) of problems solvable in polynomial space.

Keywords

Turing Machine Computation Step Division Rule Query String Nondeterministic Choice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was partially supported by Università degli Studi di Milano-Bicocca, FA 2014: “Complessità computazionale nei sistemi a membrane”.

References

  1. Alhazov A, Martín-Vide C, Pan L (2003) Solving a PSPACE-complete problem by recognizing P systems with restricted active membranes. Fundam Inf 58(2):67–77. http://iospress.metapress.com/content/99n72anvn6bkl4mm/
  2. Gutiérrez-Naranjo MA, Pérez-Jiménez MJ, Riscos-Nuñez A, Romero-Campero FJ (2006) Computational efficiency of dissolution rules in membrane systems. Int J Comput Math 83(7):593–611. doi: 10.1080/00207160601065413 MathSciNetCrossRefzbMATHGoogle Scholar
  3. Krentel MW (1988) The complexity of optimization problems. J Comput Syst Sci 36:490–509. doi: 10.1016/0022-0000(88)90039-6 MathSciNetCrossRefzbMATHGoogle Scholar
  4. Leporati A, Manzoni L, Mauri G, Porreca AE, Zandron C (2014) Simulating elementary active membranes, with an application to the P conjecture. In: Gheorghe M, Rozenberg G, Sosík P, Zandron C (eds) Membrane computing, 15th international conference, CMC 2014, Lecture Notes in Computer Science, vol 8961. Springer, pp 284–299. doi: 10.1007/978-3-319-14370-5_18
  5. Leporati A, Manzoni L, Mauri G, Porreca AE, Zandron C (2015) Membrane division, oracles, and the counting hierarchy. Fund Inf 138(1–2):97–111. doi: 10.3233/FI-2015-1201 MathSciNetzbMATHGoogle Scholar
  6. Murphy N, Woods D (2007) Active membrane systems without charges and using only symmetric elementary division characterise P. In: Eleftherakis G, Kefalas P, Păun Gh, Rozenberg G, Salomaa A (eds) Membrane computing, 8th international workshop, WMC 2007, lecture notes in computer science, vol 4860, pp 367–384. doi: 10.1007/978-3-540-77312-2_23
  7. Murphy N, Woods D (2011) The computational power of membrane systems under tight uniformity conditions. Nat Comput 10(1):613–632. doi: 10.1007/s11047-010-9244-7 MathSciNetCrossRefzbMATHGoogle Scholar
  8. Papadimitriou CH (1993) Computational complexity. Addison-Wesley, BostonzbMATHGoogle Scholar
  9. Păun Gh (2001) P systems with active membranes: attacking NP-complete problems. J Autom Lang Comb 6(1):75–90MathSciNetzbMATHGoogle Scholar
  10. Păun Gh (2005) Further twenty six open problems in membrane computing. In: Gutíerrez-Naranjo MA, Riscos-Nuñez A, Romero-Campero FJ, Sburlan D (eds) Proceedings of the third brainstorming week on membrane computing, Fénix (ed), pp 249–262. http://www.gcn.us.es/3BWMC/Volumen.htm
  11. Zandron C, Ferretti C, Mauri G (2001) Solving NP-complete problems using P systems with active membranes. In: Antoniou I, Calude CS, Dinneen MJ (eds) Unconventional models of computation, UMC’2K, proceedings of the second international conference. Springer, pp 289–301. doi: 10.1007/978-1-4471-0313-4_21
  12. Zandron C, Leporati A, Ferretti C, Mauri G, Pérez-Jiménez MJ (2008) On the computational efficiency of polarizationless recognizer P systems with strong division and dissolution. Fund Inf 87:79–91. http://iospress.metapress.com/content/95t4416hp5w165m2/

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Alberto Leporati
    • 1
  • Luca Manzoni
    • 1
  • Giancarlo Mauri
    • 1
  • Antonio E. Porreca
    • 1
  • Claudio Zandron
    • 1
  1. 1.Dipartimento di Informatica, Sistemistica e ComunicazioneUniversità degli Studi di Milano-BicoccaMilanItaly

Personalised recommendations