Natural Computing

, Volume 14, Issue 1, pp 109–128 | Cite as

Understanding tissue morphology: model repurposing using the CoSMoS process

  • Ye Li
  • Adam T. Sampson
  • James Bown
  • Hilal S. Khalil
  • Yusuf Deeni


We present CoSMoS as a way of structuring thinking on how to reuse parts of an existing model and simulation in a new model and its implementation. CoSMoS provides a lens through which to consider, post-implementation, the assumptions made during the design and implementation of a software simulation of physical interactions in the formation of vascular structures from endothelial cells. We show how the abstract physical model and its software implementation can be adapted for a different problem: the growth of cancer cells under varying environmental perturbations. We identify the changes that must be made to adapt the model to its new context, along with the gaps in our knowledge of the domain that must be filled by wet-lab experimentation when recalibrating the model. Through parameter exploration, we identify the parameters that are critical to the dynamic physical structure of the modelled tissue, and we calibrate these parameters using a series of in vitro experiments. Drawing inspiration from the CoSMoS project structure, we maintain confidence in the repurposed model, and achieve a satisfactory degree of model reuse within our in silico experimental system.


Calibration CoSMoS Model reuse Simulation 



The authors would like to thank their colleagues who kindly provided resources for this paper. David Harrison and Peter Mullen (University of St. Andrews) provided the HCT-116 cells used for the experiments in Sect. 4. Figure 10 appears courtesy of Simon Langdon (University of Edinburgh). Figure 15 appears courtesy of Peter Caie (University of Edinburgh). James Bown acknowledges support from the Northwood Trust.


  1. Andrews PS, Polack FAC, Sampson AT, Stepney S, Timmis J (2010) The CoSMoS process version 0.1: A process for the modelling and simulation of complex systems. Technical Report YCS-2010-453, Department of Computer Science, University of York, YorkGoogle Scholar
  2. Batchelor GK (2000) An introduction to fluid dynamics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  3. Bown J, Andrews PS, Deeni Y, Goltsov A, Idowu M, Polack FAC, Sampson AT, Shovman M, Stepney S (2012) Engineering simulations for cancer systems biology. Current Drug Targets 13(12):1560–1574CrossRefGoogle Scholar
  4. Brú A, Albertos S, Subiza JL, García-Asenjo JL, Brú I (2003) The universal dynamics of tumor growth. Biophys J 85(5):2948–2961CrossRefGoogle Scholar
  5. Carpenter A, Jones T, Lamprecht M, Clarke C, Kang I, Friman O, Guertin D, Chang J, Lindquist R, Moffat J, Golland P, Sabatini D (2006) Cell Profiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7(10):R100CrossRefGoogle Scholar
  6. Cavalli F, Gamba A, Naldi G, Semplice M, Valdembri D, Serini G (2007) 3D simulations of early blood vessel formation. J Comput Phys 225(2):2283–2300CrossRefzbMATHMathSciNetGoogle Scholar
  7. Céspedes MV, Espina C, García-Cabezas MA, Trias M, Boluda A, del Pulgar MTG, Sancho FJ, Nistal M, Lacal JC, Mangues R (2007) Orthotopic microinjection of human colon cancer cells in nude mice induces tumor foci in all clinically relevant metastatic sites. Am J Pathol 170(3):1077–1085CrossRefGoogle Scholar
  8. Choudhary B, Hanski M, Zeitz M, Hanski C (2012) Proliferation rate but not mismatch repair affects the long-term response of colon carcinoma cells to 5FU treatment. Cancer Lett 320(1):56–64CrossRefGoogle Scholar
  9. Étienne M (2006) Companion modelling: a tool for dialogue and concertation. In: Biodiversity and stakeholders: concertation itineraries, Editions Quae, Versailles, pp 44–52Google Scholar
  10. Folkman J, Haudenschild C (1980) Angiogenesis in vitro. Nature 288:551–556CrossRefGoogle Scholar
  11. Gamba A, Ambrosi D, Coniglio A, de Candia A, Di Talia S, Giraudo E, Serini G, Preziosi L, Bussolino F (2003) Percolation, morphogenesis, and burgers dynamics in blood vessels formation. Phys Rev Lett 90(118):101Google Scholar
  12. Goldstein H, Poole CP, Safko JL (2001) Classical mechanics, 3rd edn. Addison-Wesley, BostonGoogle Scholar
  13. Holmes MJ, Sleeman BD (2000) A mathematical model of tumour angiogenesis incorporating cellular traction and viscoelastic effects. J Theor Biol 202:95–112CrossRefGoogle Scholar
  14. Kaida A, Miura M (2012) Visualizing the effect of hypoxia on fluorescence kinetics in living HeLa cells using the fluorescent ubiquitination-based cell cycle indicator (Fucci). Exp Cell Res 318(3):288–297CrossRefGoogle Scholar
  15. Karamysheva AF (2008) Mechanisms of angiogenesis. Biochemistry (Moscow) 73:751–762CrossRefGoogle Scholar
  16. Kimlin LC, Casagrande G, Virador VM (2013) In vitro three-dimensional (3D) models in cancer research: an update. Mol Carcinog 52(3):167–182CrossRefGoogle Scholar
  17. Morgan DO (2007) The cell cycle: principles of control. New Science Press, New YorkGoogle Scholar
  18. Niles L (2012) Human cultured neural stem cells.
  19. Palsson E (2001) A three-dimensional model of cell movement in multicellular systems. Future Gener Comput Syst 17(7):835–852CrossRefzbMATHGoogle Scholar
  20. Papageorgis P, Cheng K, Ozturk S, Gong Y, Lambert AW, Abdolmaleky HM, Zhou JR, Thiagalingam S (2011) Smad4 inactivation promotes malignancy and drug resistance of colon cancer. Cancer Res 71(3):998–1008CrossRefGoogle Scholar
  21. Perram JW, Rasmussen J, Præstgaard E, Lebowitz JL (1996) Ellipsoid contact potential: Theory and relation to overlap potentials. Phys Rev E 54:6565–6572CrossRefGoogle Scholar
  22. Reinders J (2007) Intel Threading Building Blocks: outfitting C++ for multi-core processor parallelism. O’Reilly & Associates Inc., SebastopolGoogle Scholar
  23. Savage A, Katz E, Eberst A, Falconer RE, Houston A, Harrison DJ, Bown J (2013) Characterising the tumour morphological response to therapeutic intervention: an ex vivo model. Dis Models Mech 6(1):252–260CrossRefGoogle Scholar
  24. Serini G, Ambrosi D, Giraudo E, Gamba A, Preziosi L, Bussolino F (2003) Modeling the early stages of vascular network assembly. EMBO J 22(8):1771–1779CrossRefGoogle Scholar
  25. Stepney S (2012) A pattern language for scientific simulations. In: Proceedings of the 2012 workshop on complex systems modelling and simulation, Orleans, France, September 2012. Luniver Press, Bristol, pp 77–103Google Scholar
  26. Stepney S et al. (2015) Engineering simulations as scientific instruments. Springer, New YorkGoogle Scholar
  27. Szabó A, Ünnep R, Méhes E, Twal WO, Argraves SW, Cao Y, Czirók A (2011) Collective cell motion in endothelial monolayers. Phys Biol 7(4):046,007CrossRefGoogle Scholar
  28. Turner S, Sherratt JA (2002) Intercellular adhesion and cancer invasion: a discrete simulation using the extended Potts model. J Theor Biol 216(1):85–100CrossRefMathSciNetGoogle Scholar
  29. Welter M, Bartha K, Rieger H (2009) Vascular remodelling of an arterio-venous blood vessel network during solid tumour growth. J Theor Biol 259(3):405–422CrossRefMathSciNetGoogle Scholar
  30. Yoshikawa R, Kusunoki M, Yanagi H, Noda M, Yamamura T, Hashimoto-Tamaoki T (2001) Dual antitumor effects of 5-fluorouracil on the cell cycle in colorectal carcinoma cells: a novel target mechanism concept for pharmacokinetic modulating chemotherapy. Cancer Res 61(3):1029–1037Google Scholar
  31. Zhu J, Coakley S, Holcombe M, MacNeil S, Smallwood R (2006) Individual cell-based simulation of 3D multicellular spheroid self-assembly. Eur Cells Mater 11(Suppl 3):31Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Ye Li
    • 1
  • Adam T. Sampson
    • 1
  • James Bown
    • 1
  • Hilal S. Khalil
    • 1
  • Yusuf Deeni
    • 1
  1. 1.SIMBIOSAbertay UniversityDundeeUK

Personalised recommendations