Natural Computing

, Volume 13, Issue 3, pp 379–390 | Cite as

A cognitive-inspired algorithm for growing networks

  • Emanuele MassaroEmail author
  • Franco Bagnoli
  • Andrea Guazzini
  • Henrik Olsson


We present models for generating different classes of networks by adopting simple local strategies and an original model of the evolutionary dynamics and growth of on-line social networks. The model emulates people’s strategies for acquiring information in social networks, emphasising the local subjective view of an individual and what kind of information the individual can acquire when arriving in a new social context. We assume that the strategy proceeds through two phases: (a) a discovery phase, in which the individual becomes aware of the surrounding world and (b) an elaboration phase, in which the individual elaborates locally the information trough a cognitive-inspired algorithm. Model generated networks reproduce the main features of both theoretical and real-world networks, such as high clustering coefficient, low characteristic path length, strong division in communities, and variability of degree distributions.


Complex networks Computational modelling Growing networks 


  1. Adamic LA, Glance N (2005) The political blogosphere and the 2004 U.S. Election: divided they blog. In: Proceedings of the 3rd international workshop on Link discovery (LinkKDD ’05). ACM, New York, pp 36–43Google Scholar
  2. Bagnoli F, Massaro E, Guazzini A (2012) Community-detection cellular automata with local and long-range connectivity. In: Sirakoulis GC, Bandini S (eds) Cellular automata. Lecture notes in computer science, vol 7495. Springer, Berlin, pp 204–213Google Scholar
  3. Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512CrossRefMathSciNetGoogle Scholar
  4. Barrat A, Barthlemy M, Pastor-Satorras R, Vespignani A (2004) The architecture of complex weighted networks. PNAS 101(11):3747–3752CrossRefGoogle Scholar
  5. Bollobas B (2001) Random graphs. Cambridge University Press, New YorkCrossRefzbMATHGoogle Scholar
  6. Dorogovtesev SN, Mendes JFF (2003) Evolution of networks. Oxford University Press, OxfordCrossRefGoogle Scholar
  7. Euler L (1741) Solutio problematis ad geometriam situs pertinentis. Commentarii academiae scientiarum Petropolitanae 8:128–140Google Scholar
  8. Forster KI, Davis C (1984) Repetition priming and frequency attenuation. J Exp Psyc Learn Memory Cogn 10(4):680–698Google Scholar
  9. Gigerenzer G, Gaissmaier W (2011) Heuristic decision making. Annu Rev Psychol 62:451–482CrossRefGoogle Scholar
  10. Girvan M, Newman MEJ (2002) Community structure in social and biological networks. PNAS 99:7821–7826CrossRefzbMATHMathSciNetGoogle Scholar
  11. Internet World Stats (2013) Accessed 1 Feb 2013
  12. König D (1936) Theorie der endlichen und unendlichen Graphen, LiepzigGoogle Scholar
  13. Massaro E, Bagnoli F (2014) Hierarchical community structure in complex social networks. Acta Physica Polonica 7(2):379–393Google Scholar
  14. Massaro E, Bagnoli F, Guazzini A, Lió P (2012) Information dynamics algorithm for detecting communities in networks. CNSNS 17(11):4294–4303zbMATHGoogle Scholar
  15. Newman MEJ, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E 69:026113CrossRefGoogle Scholar
  16. Nicosia V, Bagnoli F, Latora V (2011) Impact of network structure on a model of diffusion and competitive interaction. EPL 94:68009Google Scholar
  17. Papadopoulos F, Kitsak M, Serrano M, Bogu M, Krioukov D (2012) Popularity versus similarity in growing networks. Nature 489:537–540CrossRefGoogle Scholar
  18. Reka A, Barabási AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47–97CrossRefGoogle Scholar
  19. Scott J (2000) Social networks analysis: a handbook, 2nd edn. Sage, LondonGoogle Scholar
  20. Strogatz SH (2001) Exploring complex networks. Nature 410(6825):268–276CrossRefGoogle Scholar
  21. The Koblenz Network Collection (2012) Accessed 05 May 2012
  22. Tulving E, Schacter DL, Stark HA (1982) Priming effects in word fragment completion are independent of recognition memory. J Exp Psyc Learn Memory Cogn 8(4):336–342Google Scholar
  23. Wasserman S, Faust K (1994) Social networks analysis. University Press, CambridgeCrossRefGoogle Scholar
  24. Zachary WW (1977) An information flow model for conflict and fission in small groups. J Anthropol Res 33:452–473Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Emanuele Massaro
    • 1
    • 2
    • 3
    Email author
  • Franco Bagnoli
    • 4
    • 5
  • Andrea Guazzini
    • 6
  • Henrik Olsson
    • 7
    • 8
  1. 1.Department of Information Engineering and Center for the Study of Complex SystemsUniversity of FlorenceFlorenceItaly
  2. 2.Risk and Decision Science TeamUS Army Engineer Research Development CenterConcordUSA
  3. 3.Department of Civil and Environmental EngineeringCarnegie Mellon UniversityPittsburghUSA
  4. 4.Department of Physics and Astronomy, Center for the Study of Complex SystemsUniversity of FlorenceFlorenceItaly
  5. 5.INFNFlorenceItaly
  6. 6.Department of Science of Education and Psychology, Center for the Study of Complex SystemsUniversity of FlorenceFlorenceItaly
  7. 7.Center for Adaptive Behavior and CognitionMax Planck Institute for Human DevelopmentBerlinGermany
  8. 8.Department of PsychologyUniversity of WarwickCoventryUK

Personalised recommendations