Natural Computing

, Volume 13, Issue 2, pp 225–245 | Cite as

A self-adaptive communication strategy for flocking in stationary and non-stationary environments

  • Eliseo Ferrante
  • Ali Emre Turgut
  • Alessandro Stranieri
  • Carlo Pinciroli
  • Mauro Birattari
  • Marco Dorigo
Article

Abstract

We propose a self-adaptive communication strategy for controlling the heading direction of a swarm of mobile robots during flocking. We consider the problem where a small group of informed robots has to guide a large swarm along a desired direction. We consider three versions of this problem: one where the desired direction is fixed; one where the desired direction changes over time; one where a second group of informed robots has information about a second desired direction that conflicts with the first one, but has higher priority. The goal of the swarm is to follow, at all times, the desired direction that has the highest priority and, at the same time, to keep cohesion. The proposed strategy allows the informed robots to guide the swarm when only one desired direction is present. Additionally, a self-adaptation mechanism allows the robots to indirectly sense the second desired direction, and makes the swarm follow it. In experiments with both simulated and real robots, we evaluate how well the swarm tracks the desired direction and how well it maintains cohesion. We show that, using self-adaptive communication, the swarm is able to follow the desired direction with the highest priority at all times without splitting.

Keywords

Flocking Communication Self-adaptation Self-organization Swarm intelligence Swarm robotics 

References

  1. Antonelli G, Arrichiello F, Chiaverini S (2010) Flocking for multi-robot systems via the null-space-based behavioral control. Swarm Intell 4(1):37–56CrossRefGoogle Scholar
  2. Aoki I (1980) An analysis of the schooling behavior of fish: internal organization and communication process. Bull Ocean Res Inst Univ Tokyo 12:1–62Google Scholar
  3. Aoki I (1982) A simulation study on the schooling mechanism in fish. Bull Japn Soc Sci Fish 48:1081–1088CrossRefGoogle Scholar
  4. Baldassarre, Nolfi S, Parisi D (2003) Evolving mobile robots able to display collective behaviors. Artif Life 9(3):255–267CrossRefGoogle Scholar
  5. Ballerini M, Cabibbo N, Candelier R, Cavagna A, Cisbani E, Giardina I, Lecomte V, Parisi AOG, Procaccini A, Viale M, Zdravkovic V (2008) Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study. Proc Natl Acad Sci India Sect A 105(4):1232–1237CrossRefGoogle Scholar
  6. Barnes L, Fields M, Valavanis K (2009) Swarm formation control utilizing elliptical surfaces and limiting functions. IEEE Trans Syst Man Cybern B Cybern Part B 39(6):1434–1445CrossRefGoogle Scholar
  7. Bonani M, Longchamp V, Magnenat S, Rétornaz P, Burnier D, Roulet G, Vaussard F, Bleuler H, Mondada F (2010) The MarXbot, a miniature mobile robot opening new perspectives for the collective-robotic research. In: 2010 IEEE/RSJ international conference on intelligent robots and systems (IROS 2010), IEEE Press, Piscataway, pp 4187–4193Google Scholar
  8. Brambilla M, Ferrante E, Birattari M, Dorigo M (2013) Swarm robotics: a review from the swarm engineering perspective. Swarm Intell 7(1):1–41CrossRefGoogle Scholar
  9. Campo A, Nouyan S, Birattari M, Groß R, Dorigo M (2006) Negotiation of goal direction for cooperative transport. In: Dorigo M, Gambardella LM, Birattari M, Martinoli A, Poli R, Stützle T (eds) Ant colony optimization and swarm intelligence (ANTS) 2006. Lecture notes in computer science, vol 4150. Springer, Berlin, pp 191–202Google Scholar
  10. Çelikkanat H, Şahin E (2010) Steering self-organized robot flocks through externally guided individuals. Neural Comput Appl 19(6):849–865CrossRefGoogle Scholar
  11. Couzin I, Krause J, James R, Ruxton G, Franks N (2002) Collective memory and spatial sorting in animal groups. J Theor Biol 218(1):1–11CrossRefMathSciNetGoogle Scholar
  12. Couzin ID, Krause J, Franks NR, Levin SA (2005) Effective leadership and decision-making in animal groups on the move. Nature 433:513–516CrossRefGoogle Scholar
  13. Diwold K, Schaerf T, Myerscough M, Middendorf M, Beekman M (2011) Deciding on the wing: in-flight decision making and search space sampling in the red dwarf honeybee Apis florea. Swarm Intell 5(2):121–141CrossRefGoogle Scholar
  14. Dorigo M, Floreano D, Gambardella LM, Mondada F, Nolfi S, Baaboura T, Birattari M, Bonani M, Brambilla M, Brutschy A, Burnier D, Campo A, Christensen A, Decugnière A, Di Caro G, Ducatelle F, Ferrante E, Förster A, Guzzi J, Longchamp V, Magnenat S, Martinez Gonzales J, Mathews N, Montes de Oca M, O’Grady R, Pinciroli C, Pini G, Rétornaz P, Roberts J, Sperati V, Stirling T, Stranieri A, Stützle T, Trianni V, Tuci E, Turgut AE, Vaussard F (2013) Swarmanoid a novel concept for the study of heterogeneous robotic swarms. IEEE Robot Autom Mag 20(4)Google Scholar
  15. Ducatelle F, Di Caro G, Pinciroli C, Gambardella LM (2011) Self-organized cooperation between robotic swarms. Swarm Intell 5(2):73–96Google Scholar
  16. Ferrante E, Sun W, Turgut AE, Dorigo M, Birattari M, Wenseleers T (2012a) Self-organized flocking with conflicting goal directions. In: Blondel V, Carletti T, Carlon E, Wit AD, Gaspard P, Goldbeter A, Lambiotte R, Vanderzande C (eds) Proceedings of the 12th European conference on complex systems (ECCS 2012). Lecture notes in computer science. Springer, BerlinGoogle Scholar
  17. Ferrante E, Turgut AE, Huepe C, Stranieri A, Pinciroli C, Dorigo M (2012b) Self-organized flocking with a mobile robot swarm: a novel motion control method. Adapt Behav 20(6):460–477CrossRefGoogle Scholar
  18. Ferrante E, Turgut AE, Mathews N, Birattari M, Dorigo M (2010) Flocking in stationary and non-stationary environments: A novel communication strategy for heading alignment. In: Schaefer R, Cotta C, Kołodziej J, Rudolph G (eds) Parallel Problem Solving from Nature—PPSN XI. Lecture notes in computer science, vol 6239. Springer, Berlin, pp 331–340Google Scholar
  19. Ferrante E, Turgut AE, Stranieri A, Pinciroli C, Birattari M, Dorigo M (2011) A self-adaptive communication strategy for flocking in stationary and non-stationary environments: complete data. Supplementary information http://iridia.ulb.ac.be/supp/IridiaSupp2011-025/. Accessed 6 Aug 2013
  20. François G, Sophie B, Nicolas B, Gutierrez M (2006) Waves of agitation inside anchovy schools observed with multibeam sensor: a way to transmit information in response to predation. ICES J Mar Sci 63:1405–1417CrossRefGoogle Scholar
  21. Franks NR, Hooper JW, Gumn M, Bridger TH, Marshall JAR, Gross R,Dornhaus A (2007) Moving targets: collective decisions and flexible choices in house-hunting ants. Swarm Intell 10(2):81–94Google Scholar
  22. Gautrais J, Ginelli F, Fournier R, Blanco S, Soria M, Chaté H, Theraulaz G (2012) Deciphering interactions in moving animal groups. PLoS Comput Biol 8(9):e1002678+Google Scholar
  23. Gökçe F, Şahin E (2010) The pros and cons of flocking in the long-range “migration” of mobile robot swarms. Theor Comput Sci 411(21):2140–2154CrossRefMATHGoogle Scholar
  24. Hauert S, Winkler L, Zufferey JC, Floreano D (2008) Ant-based swarming with positionless micro air vehicles for communication relay. Swarm Intell 20(2–4):167–188CrossRefGoogle Scholar
  25. Hayes A, Dormiani-Tabatabaei P (2002) Self-organized flocking with agent failure: off-line optimization and demonstration with real robots. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), IEEE Press, Piscataway, pp 3900–3905Google Scholar
  26. Hettiarachchi S, Spears W (2009) Distributed adaptive swarm for obstacle avoidance. Int J Intell Comput Cybern 2(4):644–671CrossRefMATHMathSciNetGoogle Scholar
  27. Holland O, Woods J, Nardi R, Clark A (2005) Beyond swarm intelligence: the ultraswarm. In: Proceedings of the IEEE swarm Intelligence symposium, IEEE Press, Piscataway, pp 217– 224Google Scholar
  28. Katz Y, Tunstrøm K, Ioannou CC, Huepe C, Couzin ID (2011) Inferring the structure and dynamics of interactions in schooling fish. Proc Natl Acad Sci India Sect A 108(46):18720–18725CrossRefGoogle Scholar
  29. Kelly I, Keating D (1996) Flocking by the fusion of sonar and active infrared sensors on physical autonomous robots. In: Proceedings of the third international conference on mechatronics and machine vision in practice (M2VIP), pp 14–17Google Scholar
  30. Makinson JC, Oldroyd BP, Schaerf TM, Wattanachaiyingcharoen W, Beekman M (2011) Moving home: nest-site selection in the red dwarf honeybee (Apis florea). Behav Ecol Sociobiol 65(5):945–958CrossRefGoogle Scholar
  31. Matarić MJ (1994) Interaction and intelligent behavior. PhD thesis, MIT, Boston, MAGoogle Scholar
  32. Monteiro S, Bicho E (2010) Attractor dynamics approach to formation control: theory and application. Auton Robots 29(3–4):331–355CrossRefGoogle Scholar
  33. Montes de Oca MA, Ferrante E, Scheidler A, Pinciroli C, Birattari M, Dorigo M (2011) Majority-rule opinion dynamics with differential latency: a mechanism for self-organized collective decision-making. Swarm Intell 5(3–4):305–327CrossRefGoogle Scholar
  34. Moshtagh N, Jadbabaie A, Daniilidis K (2006) Vision-based control laws for distributed flocking of nonholonomic agents. In: Proceedings of the IEEE international conference on robotics and automation, Orlando, FL, pp 2769–2774Google Scholar
  35. Moslinger C, Schmickl T, Crailsheim K (2009) A minimalistic flocking algorithm for swarm robots. In: Kampis G, Karsai I, Szathmà àry E (eds) European conference of artificial life (ECAL), Springer, BerlinGoogle Scholar
  36. Nembrini J, Winfield AFT, Melhuish C (2002) Minimalist coherent swarming of wireless networked autonomous mobile robots. In: Hallam B, Floreano D (eds) From animals to animats, vol 7. MIT Press,Cambridge, MA, pp 273–382Google Scholar
  37. Pinciroli C, Trianni V, O’Grady R, Pini G, Brutschy A, Brambilla M, Mathews N, Ferrante E, Di Caro G, Ducatelle F, Birattari M, Gambardella LM, Dorigo M (2012) ARGoS: a modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intell 6(4):271–295CrossRefGoogle Scholar
  38. Pini G, Brutschy A, Frison M, Roli A, Dorigo M, Birattari M (2011) Task partitioning in swarms of robots: an adaptive method for strategy selection. Swarm Intell 5(3–4):283–304CrossRefGoogle Scholar
  39. Press W, Teukolsky S, Vetterling W, Flannery B (1992) Numerical recipes in C, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  40. Regmi A, Sandoval R, Byrne R, Tanner H, Abdallah C (2005) Experimental implementation of flocking algorithms in wheeled mobile robots. In: Jayasuriya S (ed) Proceedings of the American control conference, vol 7. IEEE Press, Piscataway, pp 4917– 4922Google Scholar
  41. Reynolds C (1987) Flocks, herds and schools: a distributed behavioral model. In: Stone MC (ed) SIGGRAPH ’87: Proceedings of the 14th annual conference on computer graphics and interactive techniques, ACM Press, New York, pp 25–34Google Scholar
  42. Roberts J, Stirling T, Zufferey J, Floreano D (2009) 2.5d infrared range and bearing system for collective robotics. In: Papanikolopoulos N, Sugano S, Chiaverini S, Meng M (eds) IEEE/RSJ international conference on intelligent robots and systems, IEEE Press, PiscatawayGoogle Scholar
  43. Simpson SJ, Sword GA, Lorch PD, Couzin ID (2006) Cannibal crickets on a forced march for protein and salt. Proc Natl Acad Sci USA 103(11):4152-4156CrossRefGoogle Scholar
  44. Spears WM, Spears DF, Hamann JC, Heil R (2004) Distributed, physiscs-based control of swarms of vehicles. Auton Robots 17:137–162CrossRefGoogle Scholar
  45. Sperati V, Trianni V, Nolfi S (2011) Self-organised path formation in a swarm of robots. Swarm Intell 5(2):97–119CrossRefGoogle Scholar
  46. Stranieri A, Ferrante E, Turgut A, Trianni V, Pinciroli C, Birattari M, Dorigo M (2011) Self-organized flocking with a heterogeneous mobile robot swarm. In: Lenaerts T, Giacobini M, Bersini H, Borgine P, Dorigo M, Doursat R (eds) Proceedings of ECAL 2001, MIT Press, Cambridge, MA, pp 789–796Google Scholar
  47. Turgut AE, Çelikkanat H, Gökçe F, Şahin E (2008) Self-organized flocking in mobile robot swarms. Swarm Intell 2(2):97–120Google Scholar
  48. Vicsek T, Czirok A, Ben-Jacob E, Cohen I, Shochet O (1995) Novel type of phase transition in a system of self-driven particles. Phys Rev Lett 75(6):1226–1229Google Scholar
  49. Yu C, Werfel J, Nagpal R (2010) Collective decision-making in multi-agent systems by implicit leadership. In: van der Hoek, Kaminka, Lesprance, Luck, Sen (eds) Proceedings of 9th internatial conference on autonomous agents and multiagent systems (AAMAS2010), International Foundation for Autonomous Agents and Multiagent Systems, Toronto, CanadaGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Eliseo Ferrante
    • 1
    • 2
  • Ali Emre Turgut
    • 3
  • Alessandro Stranieri
    • 1
  • Carlo Pinciroli
    • 1
  • Mauro Birattari
    • 1
  • Marco Dorigo
    • 1
    • 4
  1. 1.IRIDIA, CoDEUniversité Libre de BruxellesBrusselsBelgium
  2. 2.Laboratory of Socioecology and Social EvolutionKatholieke Universiteit LeuvenLouvainBelgium
  3. 3.Mechatronics DepartmentTHK UniversityEtimesgutTurkey
  4. 4.Department of Computer ScienceUniversity of PaderbornPaderbornGermany

Personalised recommendations