Natural Computing

, Volume 12, Issue 4, pp 561–572 | Cite as

m-Asynchronous cellular automata: from fairness to quasi-fairness

  • Alberto Dennunzio
  • Enrico Formenti
  • Luca Manzoni
  • Giancarlo Mauri
Article

Abstract

A new model for the study of asynchronous cellular automata dynamical behavior is introduced with the main purpose of unifying several existing paradigms. The main idea is to measure the set of updating sequences to quantify the dependency of the properties under investigation from them. We propose to use the class of quasi-fair measures, namely measures that satisfy some fairness conditions on the updating sequences. Basic set properties like injectivity and surjectivity are adapted to the new setting and studied. In particular, we prove that they are dimensions sensitive properties (i.e., they are decidable in dimension 1 and undecidable in higher dimensions). A first exploration of dynamical properties is also started, some results about equicontinuity and expansivity behaviors are provided.

Keywords

Cellular automata Asynchronous cellular automata Dynamical behavior Decidability 

References

  1. Acerbi L, Dennunzio A, Formenti E (2009) Conservation of some dynamical properties for operations on cellular automata. Theor Comput Sci 410(38–40):3685–3693MathSciNetCrossRefMATHGoogle Scholar
  2. Acerbi L, Dennunzio A, Formenti E (2013) Surjective multidimensional cellular automata are non-wandering: a combinatorial proof. Inf Process Lett 113(5–6):156–159MathSciNetCrossRefMATHGoogle Scholar
  3. Amoroso S, Patt YN (1972) Decision procedures for surjectivity and injectivity of parallel maps for tesselation structures. J Comput Syst Sci 6:448–464MathSciNetCrossRefMATHGoogle Scholar
  4. Bersini H, Detours V (1994) Asynchrony induces stability in cellular automata based models. In: Proceedings of artificial life IV. MIT Press, Cambridge, pp 382–387Google Scholar
  5. Blanchard F, Cervelle J, Formenti E (2005) Some results about the chaotic behavior of cellular automata. Theor Comput Sci 349(3):318–336MathSciNetCrossRefMATHGoogle Scholar
  6. Buvel RL, Ingerson TE (1984) Structure in asynchronous cellular automata. Phys D 1:59–68MathSciNetGoogle Scholar
  7. Cantelli FP (1917) Sulla probabilità come limite della frequenza. Rend Accad Lincei 24:39–45Google Scholar
  8. Cattaneo G, Dennunzio A, Margara L (2002) Chaotic subshifts and related languages applications to one-dimensional cellular automata. Fundam Inform 52:39–80MathSciNetMATHGoogle Scholar
  9. Cattaneo G, Dennunzio A, Margara L (2004) Solution of some conjectures about topological properties of linear cellular automata. Theor Comput Sci 325:249–271MathSciNetCrossRefMATHGoogle Scholar
  10. Cattaneo G, Dennunzio A, Farina F (2006) A full cellular automaton to simulate predator–prey systems. In: Yacoubi El, Chopard B, Bandini S (eds) ACRI. Lecture notes in computer science, vol 4173. Springer, Berlin, pp 446–451Google Scholar
  11. Cattaneo G, Dennunzio A, Formenti E, Provillard J (2009) Non-uniform cellular automata. In: LATA. Lecture notes in computer science, vol 5457. Springer, Berlin, pp 302–313Google Scholar
  12. Chaudhuri P, Chowdhury D, Nandi S, Chattopadhyay S (1997) Additive cellular automata theory and applications, vol 1. IEEE Press, New YorkMATHGoogle Scholar
  13. Chopard B (2012) Cellular automata and lattice boltzmann modeling of physical systems. In: Rozenberg G et al (ed) Handbook of natural computing. Springer, Berlin, pp 287–331CrossRefGoogle Scholar
  14. Dennunzio A (2012) From one-dimensional to two-dimensional cellular automata. Fundam Inform 115:87–105MathSciNetMATHGoogle Scholar
  15. Dennunzio A, Formenti E (2008) Decidable properties of 2D cellular automata. In: 12th conference on developments in language theory (DLT 2008). Lecture notes in computer science, vol 5257. Springer, Berlin, pp 264–275Google Scholar
  16. Dennunzio A, Guillon P, Masson B (2008) Stable dynamics of sand automata. In: IFIP TCS. IFIP, vol 273. Springer, Berlin, pp 157–169Google Scholar
  17. Dennunzio A, Di Lena P, Formenti E, Margara L (2009a) On the directional dynamics of additive cellular automata. Theor Comput Sci 410:4823–4833MathSciNetCrossRefMATHGoogle Scholar
  18. Dennunzio A, Guillon P, Masson B (2009b) Sand automata as cellular automata. Theor Comput Sci 410:3962–3974MathSciNetCrossRefMATHGoogle Scholar
  19. Dennunzio A, Formenti E, Kůrka P (2012a) Cellular automata dynamical systems. In: Rozenberg G et al (ed) Handbook of natural computing. Springer, Berlin, pp 25–75CrossRefGoogle Scholar
  20. Dennunzio A, Formenti E, Manzoni L (2012b) Computing issues of asynchronous ca. Fundam Inform 120(2):165–180MathSciNetMATHGoogle Scholar
  21. Dennunzio A, Formenti E, Manzoni L, Mauri G (2012c) m-asynchronous cellular automata. In: Sirakoulis GCh, Bandini S (eds) ACRI. Lecture notes in computer science, vol 7495. Springer, Berlin, pp 653–662Google Scholar
  22. Dennunzio A, Formenti E, Provillard J (2012d) Non-uniform cellular automata: classes, dynamics, and decidability. Inf Comput 215:32–46MathSciNetCrossRefMATHGoogle Scholar
  23. Dennunzio A, Di Lena P, Formenti E, Margara L (2013a) Periodic orbits and dynamical complexity in cellular automata. Fundam Inform 126:183–199Google Scholar
  24. Dennunzio A, Formenti E, Provillard J (2013b) Local rule distributions, language complexity and non-uniform cellular automata. Theor Comput Sci (in press)Google Scholar
  25. Dennunzio A, Formenti E, Weiss M (2013c) Multidimensional cellular automata: closing property, quasi-expansivity, and (un)decidability issues. Theor Comput Sci (to appear)Google Scholar
  26. Farina F, Dennunzio A (2008) A predator–prey cellular automaton with parasitic interactions and environmental effects. Fundam Inform 83(4):337–353MathSciNetMATHGoogle Scholar
  27. Fatès N, Morvan M (2005) An experimental study of robustness to asynchronism for elementary cellular automata. Complex Syst 16(1):1–27Google Scholar
  28. Fatès N, Morvan M, Schabanel N, Thierry E (2006) Fully asynchronous behaviour of double-quiescent elementary cellular automata. Theor Comput Sci 362:1–16CrossRefMATHGoogle Scholar
  29. Fatès N, Regnault D, Schabanel N, Thierry E (2006) Asynchronous behaviour of double-quiescent elementary cellular automata. In: Proceedings of LATIN ’2006. Lecture notes in computer science, vol 3887. Springer, Berlin, pp 455–466Google Scholar
  30. Fukś H (2002) Non-deterministic density classification with diffusive probabilistic cellular automata. Phys Rev E 66(2):066106Google Scholar
  31. Fukś H (2004) Probabilistic cellular automata with conserved quantities. Nonlinearity 17(1):159–173MathSciNetCrossRefMATHGoogle Scholar
  32. Halmos PR (1974) Measure theory. Graduate texts in mathematics, vol 38. Springer, BerlinGoogle Scholar
  33. Hedlund GA (1969) Endomorphisms and automorphisms of the shift dynamical system. Math Syst Theory 3:320–375MathSciNetCrossRefMATHGoogle Scholar
  34. Kari J (1994) Reversibility and surjectivity problems of cellular automata. J Comput Syst Sci 48(1):149–182MathSciNetCrossRefMATHGoogle Scholar
  35. Kier LB, Seybold PG, Cheng C-K (2005) Modeling chemical systems using cellular automata. Springer, BerlinGoogle Scholar
  36. Lee J, Adachi S, Peper F, Mashiko S (2005) Delay-insensitive computation in asynchronous cellular automata. J Comput Syst Sci 70:201–220MathSciNetCrossRefMATHGoogle Scholar
  37. Lumer ED, Nicolis G (1994) Synchronous versus asynchronous dynamics in spatially distributed systems. Phys D 71:440–452CrossRefMATHGoogle Scholar
  38. Macauley M, McCammond J, Mortveit HS (2008) Order independence in asynchronous cellular automata. J Cell Autom 3(1):37–56MathSciNetMATHGoogle Scholar
  39. Manzoni L (2012) Asynchronous cellular automata and dynamical properties. Nat Comput 11(2):269–276MathSciNetCrossRefGoogle Scholar
  40. Nakamura K (1974) Asynchronous cellular automata and their computational ability. Syst Comput Control 5:58–66Google Scholar
  41. Regnault D (2006) Abrupt behaviour changes in cellular automata under asynchronous dynamics. In: Electronic proceedings of 2nd European conference on complex systems, ECCS, Oxford, 2006Google Scholar
  42. Regnault D, Schabanel N, Thierry E (2009) Progresses in the analysis of stochastic 2D cellular automata: a study of asynchronous 2D minority. Theor Comput Sci 410:4844–4855MathSciNetCrossRefMATHGoogle Scholar
  43. Schönfisch B, de Roos A (1999) Synchronous and asynchronous updating in cellular automata. BioSystems 51:123–143CrossRefGoogle Scholar
  44. Worsch T (2010) A note on (intrinsically?) universal asynchronous cellular automata. In: Proceedings of automata 2010, 14–16 June 2010, Nancy, pp 339–350Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Alberto Dennunzio
    • 1
  • Enrico Formenti
    • 2
  • Luca Manzoni
    • 2
  • Giancarlo Mauri
    • 1
  1. 1.Dipartimento di Informatica, Sistemistica e ComunicazioneUniversità degli Studi di Milano-BicoccaMilanItaly
  2. 2.Laboratoire I3SUniversité Nice Sophia AntipolisSophia AntipolisFrance

Personalised recommendations