Natural Computing

, Volume 12, Issue 2, pp 135–147 | Cite as

Cloud-based evolutionary algorithms: An algorithmic study

  • K. Meri
  • M. G. Arenas
  • A. M. Mora
  • J. J. Merelo
  • P. A. Castillo
  • P. García-Sánchez
  • J. L. J. Laredo
Article

Abstract

This paper presents a cloud-computing based evolutionary algorithm using a synchronous storage service as pool for exchange information among population of solutions. The multi-computer was composed of several normal PCs or laptops connected via Wifi or Ethernet. In this work the effect of how the distributed evolutionary algorithm reached the solution when new PCs was added was tested whether that effect also translates to the algorithmic performance of the algorithm. To this end different (and hard) problems was addressed using the proposed multi-computer, analyzing the effects that the automatic load-balancing and synchronization had on the speed of algorithm successful, and analyzing how the number of evaluation per second increases when the multi-computer includes new nodes. The measure used for the analysis was number of evaluation per second which was increased when the multi-computer includes new nodes. The algorithm solved the proposed problems and it was viable to run it in homogeneous or heterogeneous platforms. The experiments includes two problems and different configuration for the distributed evolutionary algorithm in order to check the results of the algorithm for several rates of information exchange with the selected storage service. Results shows that the system is viable with homogeneous or heterogeneous nodes and there is no significative differences for the synchronous storage services we have tested. But when the problem is harder, and the threads of the algorithm does not stop for each information exchange (migration of individual from one population to another one), the differences of using a specific service became significative in terms of success of the algorithm.

Keywords

Evolutionary parallel algorithm Cloud computing Free storage services Distributed computing 

References

  1. Alfaro-Cid E, Merelo JJ, de Vega F, Fernández, Esparcia-Alcázar AI, Sharman K (2010) Bloat control operators and diversity in genetic programming: a comparative study. Evol Comput 18:305–332Google Scholar
  2. Araujo L, Merelo J (2010) Diversity through multiculturality: assessing migrant choice policies in an island model. In: IEEE transactions on evolutionary computation, http://www.scopus.com/inward/record.url?eid=2-s2.0-78650474606&partnerID=40&md5=7615134b1c2b04077050397cf4ea2ad7
  3. Arenas MG, Guervós JJM, Mora AM, Castillo PA, Romero G, Laredo JLJ (2011) Assessing speed-ups in commodity cloud storage services for distributed evolutionary algorithms. In: IEEE congress on evolutionary computation. IEEE, pp 304–311Google Scholar
  4. Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, Konwinski A, Lee G, Patterson D, Rabkin A, Stoica I, Zaharia M (2010) A view of cloud computing. Commun ACM 53:50–58. doi:10.1145/1721654.1721672. Google Scholar
  5. Barabási AL, Freeh VW, Jeong H, Brockman JB (2001) Parasitic computing. Nature 412(6850):894–897. http://www.nature.com/cgi-taf/DynaPage.taf?file=/nature/journal/v412/n6850/abs/412894a0_fs.html Google Scholar
  6. Bollini A, Piastra M (1999) Distributed and persistent evolutionary algorithms: a design pattern. In: Genetic programming, proceedings EuroGP’99, no. 1598 in lecture notes in computer science. Springer, New York, pp 173–183Google Scholar
  7. Broberg J, Buyya R, Tari Z. (2009) Metacdn: harnessing storage clouds’ for high performance content delivery. J Netw Comput Appli 32(5):1012–1022. doi:10.1016/j.jnca.2009.03.004, http://www.sciencedirect.com/science/article/B6WKB-4W0R0PY-2/2/3b86507c3e3c2d6d41f58cd27f6914eb Google Scholar
  8. Cantú-Paz E (1999) Topologies, migration rates, and multi-population parallel genetic algorithms. In: Genetic and evolutionary computation conference, GECCO-99, pp 13–17Google Scholar
  9. Chervenak A, Foster I, Kesselman C, Salisbury C, Tuecke S (2000) The data grid: towards an architecture for the distributed management and analysis of large scientific datasets. J Netw Comput Appl 23(3):187–200CrossRefGoogle Scholar
  10. de Souza P, Talukdar S (1991) Genetic algorithms in asynchronous teams. In: Proceedings of the fourth international conference on genetic algorithms. Morgan Kaufmann, San Francisco, pp 392–399Google Scholar
  11. Goldberg DE, Deb K, Horn J (1992) Massive multimodality, deception, and genetic algorithms. In: Männer R, Manderick B (eds) Parallel problem solving from nature, vol 2. Elsevier, Amsterdam, pp 37–48, http://citeseer.ist.psu.edu/goldberg92massive.html
  12. Jin H, Ibrahim S, Bell T, Gao W, Huang D, Wu S (2010) Cloud types and services. In: Furht B, Escalante A (eds) Handbook of cloud computing. Springer, New York, pp 335–355. doi:10.1007/978-1-4419-6524-0_14.
  13. Jong KAD, Potter MA, Spears WM (1997) Using problem generators to explore the effects of epistasis. In: Bäck T (ed) Proceedings of the seventh international conference on genetic algorithms (ICGA97). Morgan Kaufmann, San Francisco. http://citeseer.ist.psu.edu/dejong97using.html
  14. Llorà à X, Ács B, Auvil L, Capitanu B, Welge M, Goldberg D (2008) Meandre: semantic-driven data-intensive flows in the clouds. Tech Rep 2008103, Illinois Genetic Algorithms LaboratoryGoogle Scholar
  15. Merelo J, Castillo P, Laredo J, Mora A, Prieto A (2008) Asynchronous distributed genetic algorithms with Javascript and JSON. In: WCCI 2008 proceedings. IEEE Press, Hong Kong, pp 1372–1379, http://atc.ugr.es/I+D+i/congresos/2008/CEC_2008_1372.pdf
  16. Merelo JJ, Mora AM, Castillo PA, Laredo JLJ, Araujo L, Sharman KC, Esparcia-Alcázar AI, Alfaro-Cid E, Cotta C (2008) Testing the intermediate disturbance hypothesis: effect of asynchronous population incorporation on multi-deme evolutionary algorithms. In: Rudolph G, Jansen T, Lucas S, Poloni C, Beume N (eds) Parallel problem solving from nature—PPSN X, LNCS, vol 5199. Springer, Dortmund, pp 266–275, doi:10.1007/978-3-540-87700-4_27
  17. Merelo-Guervós JJ (2010) Fluid evolutionary algorithms. In: IEEE congress on evolutionary computation. IEEE, pp 1–8Google Scholar
  18. Miller BL, Miller BL, Goldberg DE, Goldberg DE (1995) Genetic algorithms, tournament selection, and the effects of noise. Complex Syst 9:193–212MathSciNetGoogle Scholar
  19. Pamies-Juarez L, Garcia Lopez P, Sanchez-Artigas M, Herrera B (2010) Towards the design of optimal data redundancy schemes for heterogeneous cloud storage infrastructures. Comput Netw. doi:10.1016/j.comnet.2010.11.004, http://www.sciencedirect.com/science/article/B6VRG-51H70BC-1/2/7d311ced40a874e4cf540a373eefc430
  20. Roy G, Lee H, Welch J, Zhao Y, Pandey V, Thurston D (2009) A distributed pool architecture for genetic algorithms. In: Evolutionary computation, CEC ’09. IEEE congress on, pp 1177–1184, doi:10.1109/CEC.2009.4983079
  21. Syswerda G (1989) Uniform crossover in genetic algorithms. In: Proceedings of the 3rd International conference on genetic algorithms. Morgan Kaufmann, San Francisco, pp 2–9, http://dl.acm.org/citation.cfm?id=645512.657265
  22. Talukdar S, Baerentzen L, Gove A, De Souza P (1998) Asynchronous teams: cooperation schemes for autonomous agents. J Heurist 4(4):295–321CrossRefGoogle Scholar
  23. Talukdar S, Murthy S, Akkiraju R (2003) Asynchronous teams. International series in operations research and management science, pp 537–556Google Scholar
  24. Whitley D, Rana S, Heckendorn R (1997) Island model genetic algorithms and linearly separable problems. In: Evolutionary computing, pp 109–125Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • K. Meri
    • 1
  • M. G. Arenas
    • 1
  • A. M. Mora
    • 1
  • J. J. Merelo
    • 1
  • P. A. Castillo
    • 1
  • P. García-Sánchez
    • 1
  • J. L. J. Laredo
    • 1
  1. 1.GeNeura Department of Architecture and Computer Technology, ETSIIT-CITICUniversity of GranadaGranadaSpain

Personalised recommendations