Natural Computing

, Volume 12, Issue 3, pp 393–410 | Cite as

Using transition systems to describe and predict the behaviour of structured excitable media

Article
  • 142 Downloads

Abstract

I show how transition systems can be applied to the naturally concurrent behaviour of excitable media. I consider structured excitable media, in which excitations are constrained to propagate only in defined narrow channels, and cannot propagate elsewhere. I define a type of transition system that can be used to describe the complete set of behaviours exhibited by simple structures. The composition rules that result from this definition can be used to automatically deduce the behaviour of more complex structures composed from simpler structures. Several examples illustrate the method, and a software implementation is provided.

Keywords

Transition systems Concurrency Excitable media Toppling dominoes Physarum polycephalum Belousov–Zhabotinsky reaction 

References

  1. Adamatzky A (eds) (2002) Collision based computing. Springer, LondonMATHGoogle Scholar
  2. Adamatzky A (2007) Physarum machines: encapsulating reaction-diffusion to compute spanning tree. Naturwissenschaften 94:975–980CrossRefGoogle Scholar
  3. Adamatzky A (2010) Physarum machines: computers from slime mould. World Scientific Series on Nonlinear Science, Series A. 74. World Scientific, Singapore, ISBN:978-981-4327-58-9Google Scholar
  4. Adamatzky A, De Lacy Costello B, Shirakawa T (2008) Universal computation with limited resources: Belousov-Zhabotinsky and Physarum computers. Int J Bifurcation Chaos 18(8):2373–2389MathSciNetCrossRefGoogle Scholar
  5. De Lacy Costello B, Adamatzky A, Jahan I, Zhang L (2011) Towards constructing one-bit binary adder in excitable chemical medium. Chem Phys 381(1–3):88–99CrossRefGoogle Scholar
  6. Gáspár V, Bazsa G, Beck MT (1983) The influence of visible light on the Belousov Zhabotinskii oscillating reactions applying different catalysts. Z Phys Chem (Leipzig) 264(1):43–48Google Scholar
  7. Gorecki J, Gorecka JN, Igarashi Y (2009) Information processing with structured excitable medium. Nat Comput 8:473–492MathSciNetMATHCrossRefGoogle Scholar
  8. Halvorsrud R, Wagner G (1998) Growth patterns of the slime mold Physarum on a nonuniform substrate. Phys Rev E 57(1):941–948CrossRefGoogle Scholar
  9. Harding SL, Miller JF (2005) Evolution in materio: a real-time robot controller in liquid crystal. In: Proceedings NASA/DoD conference on evolvable hardware. IEEE Press, Washington, DC, USA, pp 229–238Google Scholar
  10. Harel D, Pnueli A (1985) On the development of reactive systems. In: Apt KR (eds) Logics and models of concurrent systems. NATO ASI series, vol F-13. Springer, New York, pp 477–498CrossRefGoogle Scholar
  11. Igarashi Y, Górecki J, Górecka JN (2008) One dimensional signal diodes constructed with excitable chemical system. Acta Phys Polon 39(5):1187–1197Google Scholar
  12. Jones J (2010) The emergence and dynamical evolution of complex transport networks from simple low-level behaviours. Int J Unconv Comput 6(2):125–144Google Scholar
  13. Kuhnert L, Agladze KI, Krinsky VI (1989) Image processing using light-sensitive chemical waves. Nature 337(6204):244–247CrossRefGoogle Scholar
  14. Milner R (1989) Communication and concurrency. Prentice Hall, LondonMATHGoogle Scholar
  15. Motoike I, Yoshikawa K (1999) Information operations with an excitable field. Phys Rev E 59:5354–5360CrossRefGoogle Scholar
  16. Nakagaki T, Kobayashi R, Nishiura Y, Ueda T (2004) Obtaining multiple separate food sources: behavioural intelligence in the Physarum plasmodium. Proc R Soc B Biol Sci 271(1554):2305–2310CrossRefGoogle Scholar
  17. O’Keefe S (2009) Implementation of logical operations on a domino substrate. Int J Unconv Comput 5(2):115–128Google Scholar
  18. Sparsø J, Furber S (eds) (2001) Principles of asynchronous circuit design—a systems perspective. Kluwer, BostonGoogle Scholar
  19. Steinbock O, Kettunen P, Showalter K (1996) Chemical wave logic gates. J Phys Chem 100:18970–18975CrossRefGoogle Scholar
  20. Stepney S (2008) The neglected pillar of material computation. Physica D 237(9):1157–1164MathSciNetMATHCrossRefGoogle Scholar
  21. Stevens WM (2008) Logic circuits in a system of repelling particles. Int J Unconv Comput 4(1):61–77Google Scholar
  22. Stevens WM (2012) Computing with planar toppling domino arrangements. Nat Comput. doi:10.1007/s11047-012-9341-x
  23. Tero A, Ryo K, Toshiyuki N (2007) A mathematical model for adaptive transport network in path finding by true slime mold. J Theor Biol 244(4):553–564CrossRefGoogle Scholar
  24. Toth R, Stone C, Adamatzky A, De Lacy Costello B, Bull L (2009) Experimental validation of binary collisions between wave fragments in the photosensitive Belousov-Zhabotinsky reaction. Chaos Solitons Fractals 41:1605–1615CrossRefGoogle Scholar
  25. Tsuda S, Zauner K, Gunji Y (2006) Robot control with biological cells. Biosystems 87(2–3):215–223Google Scholar
  26. Wagon S, Pontarelli A, Briggs W, Becker S (2005) The dynamics of falling dominoes. The UMAP J 26(1):35–47Google Scholar
  27. Wang X, Kwiatkowska M (2007) On process-algebraic verification of asynchronous circuits. Fundam Inform 80(1–3):283–310MathSciNetMATHGoogle Scholar
  28. Winskel G, Nielsen M (1995) Models for concurrency, In: Handbook of logic in computer science, vol 4. Oxford University Press, Oxford, pp 1–20Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Unconventional Computing Group, Faculty of Environment and TechnologyUniversity of the West of EnglandBristolUK

Personalised recommendations