Natural Computing

, Volume 12, Issue 1, pp 19–26 | Cite as

Experimental multipartner quantum communication complexity employing just one qubit

  • Pavel Trojek
  • Christian Schmid
  • Mohamed Bourennane
  • Časlav Brukner
  • Marek Żukowski
  • Harald Weinfurter


Most proposals for quantum solutions of information-theoretic problems rely on the usage of multi-partite entangled states which are still difficult to produce experimentally with current state-of-the-art technology. Here, we analyze a scheme to simplify a particular kind of multiparty communication protocols for the experiment. We prove that the fidelity of two communication complexity protocols, allowing for an N − 1 bit communication, can be exponentially improved by N − 1 (unentangled) qubit communication. Taking into account, for a fair comparison, all inefficiencies of state-of-the-art set-up, the experimental implementation for N = 5 outperforms the best classical protocol, making it the candidate for multi-party quantum communication applications.


Communication complexity Quantum communication Quantum information Parametric down conversion 



This work was supported by the DFG, EU-FET (RamboQ, IST-2001-38864), Marie-Curie program and DAAD/KBN exchange program. M.Ż. was supported by the VI Framewoerk EU programmes QAP and SCALA as well as by Wenner Gren Foundations.


  1. Bennett CH, Brassard G (1984) Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International conference on computers, systems and signal processing. IEEE, New York, p 175–179Google Scholar
  2. Brukner Č, Żukowski M, Pan J-W, Zeilinger A (2004) Bell’s inequalities and quantum communication complexity. Phys Rev Lett 92:127901MathSciNetCrossRefGoogle Scholar
  3. Brukner Č, Żukowski M, Zeilinger A (2002) Quantum communication complexity protocol with two entangled qutrits. Phys Rev Lett 89:197901CrossRefGoogle Scholar
  4. Buhrman H, Cleve R, van Dam W (2001) Quantum entanglement and communication complexity. Siam J Comput 30:1829–1841; [e-print: quant-ph/9705033]Google Scholar
  5. Buhrman H, Cleve R, Wigderson A (1998) Quantum vs. classical communication and computation. In: Proceedings of the 30th annual ACM symposium on theory of computing. ACM Press, New York, p 63–68Google Scholar
  6. Buhrman H, van Dam W, Høyer P, Tapp A (1999) Multiparty quantum communication complexity. Phys Rev A 60:2737–2741CrossRefGoogle Scholar
  7. Cabello A, López-Tarrida J (2005) Proposed experiment for the quantum “Guess My Number” protocol. Phys Rev A 71:020301(R)CrossRefGoogle Scholar
  8. Cleve R, van Dam W, Nielsen M, Tapp A (1999) Quantum entanglement and the communication complexity of the inner product function. Lecture notes in computer science, vol. 1509. Springer, London, p 61–74Google Scholar
  9. Cleve R, Gottesmann D, Lo H-K (1999) How to share a quantum secret. Phys Rev Lett 83:648CrossRefGoogle Scholar
  10. Ekert AK (1991) Quantum cryptography based on Bell’s theorem. Phys Rev Lett 67:661MathSciNetzbMATHCrossRefGoogle Scholar
  11. Gaertner S, Kurtsiefer C, Bourennane M, Weinfurter H (2007) Experimental demonstration of four-party quantum secret sharing. Phys Rev Lett 98:020503CrossRefGoogle Scholar
  12. Galvão EF (2002) Feasible quantum communication complexity protocol. Phys Rev A 65:012318CrossRefGoogle Scholar
  13. Gisin N, Ribordy G, Tittel W, Zbinden H (2002) Quantum cryptography. Rev Mod Phys 74:145CrossRefGoogle Scholar
  14. Hardy L, van Dam W (1999) Quantum communication using a nonlocal Zeno effect. Phys Rev A 59:2635–2640MathSciNetCrossRefGoogle Scholar
  15. Hillery M, Bužek V, Berthiaume A (1999) Quantum secret sharing. Phys Rev A 59:1829MathSciNetCrossRefGoogle Scholar
  16. Holevo AS Bounds for the quantity of information transmitted by a quantum communication channel. Probl Peredachi Inf 9:3–11 (1973) [transl: Probl Inf Transm 9:177–183 (1973)]Google Scholar
  17. Horn RT, Babichev SA, Marzlin K-P, Lvovsky AI, Sanders BC (2005) Single-qubt optical quantum fingerprinting. Phys Rev Lett 95:150502CrossRefGoogle Scholar
  18. Karlsson A, Koashi M, Imoto N (1998) Quantum entanglement for secret sharing and secret splitting. Phys Rev A 59:162CrossRefGoogle Scholar
  19. Kushilevitz E, Nisan N (1997) Communication complexity. Cambridge University Press, CambridgezbMATHGoogle Scholar
  20. Raz R (1999) Exponential separation of quantum and classical communication complexity. In: Proceedings of the 31th annual ACM symposium on theory of computing. ACM Press, New York, pp 358–367Google Scholar
  21. Schmid C, Trojek P, Bourennane M, Kurtsiefer C, Żukowski M, Weinfurter H (2005) Experimental single qubit quantum secret sharing. Phys Rev Lett 95:230505CrossRefGoogle Scholar
  22. Trojek P, Schmid C, Bourennane M, Brukner Č, Żukowski M, Weinfurter H (2005) Experimental quantum communication complexity. Phys Rev A 72:050305(R)CrossRefGoogle Scholar
  23. Xue P, Huang Y-F, Zhang Y-S, Li C-F, Guo G-C (2001) Reducing the communication complexity with quantum entanglement. Phys Rev A 64:032304CrossRefGoogle Scholar
  24. Yao AC-C (1979) Some complexity questions related to distributed computing. In: Proceedings of the 11th annual ACM symposium on theory of computing. ACM Press, New York, pp 209–213Google Scholar
  25. Zhang J, Bao X-H, Chen T-Y, Yang T, Cabello A, Pan J-W (2007) Experimental quantum “Guess my Number” protocol using multiphoton entanglement. Phys Rev A 75:022302CrossRefGoogle Scholar
  26. Żukowski M (1993) Bell theorem involving all settings of measuring apparatus. Phys Lett A 177:290–296MathSciNetCrossRefGoogle Scholar
  27. Żukowski M, Zeilinger A, Horne MA, Weinfurter H (1998) Quest for GHZ states. Acta Phys Pol 93:187Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Pavel Trojek
    • 1
    • 2
  • Christian Schmid
    • 1
    • 2
  • Mohamed Bourennane
    • 3
  • Časlav Brukner
    • 4
  • Marek Żukowski
    • 5
  • Harald Weinfurter
    • 1
    • 2
  1. 1.Ludwig-Maximilians-UniversitätMünchenGermany
  2. 2.Max-Planck-Insititut für QuantenoptikGarchingGermany
  3. 3.Physics DepartmentStockholm UniversityStockholmSweden
  4. 4.Institut für ExperimentalphysikUniversität WienWienAustria
  5. 5.Instytut Fizyki Teoretycznej i AstrofizykiUniwersytet GdanskiGdanskPoland

Personalised recommendations