Advertisement

Natural Computing

, Volume 12, Issue 1, pp 13–17 | Cite as

Oblivious transfer and quantum channels as communication resources

  • Nicolas Gisin
  • Sandu Popescu
  • Valerio Scarani
  • Stefan Wolf
  • Jürg Wullschleger
Article

Abstract

We show that from a communication-complexity perspective, the primitive called oblivious transfer—which was introduced in a cryptographic context—can be seen as the classical analogue to a quantum channel in the same sense as non-local boxes are of maximally entangled qubits. More explicitly, one realization of non-cryptographic oblivious transfer allows for the perfect simulation of sending one qubit and measuring it in an orthogonal basis. On the other hand, a qubit channel allows for realizing non-cryptographic oblivious transfer with probability roughly 85 %, whereas 75 % is the classical limit.

Keywords

Classical teleportation Quantum channel Communication complexity Oblivious transfer 

Notes

Acknowledgments

This work was supported by the Swiss National Science Foundation (SNF). We thank the anonymous reviewers for their valuable comments on this work.

References

  1. Ambainis A, Nayak A, Ta-Shma A, Vazirani U (1998) Dense quantum coding and a lower bound for 1-way quantum automata. quant-ph/9804043Google Scholar
  2. Bell JS (1964) On the Einstein–Podolsky–Rosen paradox. Physics 1:195–200Google Scholar
  3. Bennett CH, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W (1993) Teleporting an unknown quantum state via dual classical and EPR channels. Phys Rev Lett 70:1895–1899MathSciNetzbMATHCrossRefGoogle Scholar
  4. Buhrman H, Christandl M, Unger F, Wehner S, Winter A (2006) Implications of superstrong nonlocality for cryptography. Proc R Soc A 462(2071):1919–1932, quant-ph/0504133Google Scholar
  5. Cerf N, Gisin N, Massar S (2000) Classical teleportation of a quantum bit. Phys Rev Lett 84(11):2521–2524Google Scholar
  6. Cerf N, Gisin N, Massar S, Popescu S (2005) Simulating maximal quantum entanglement without communication. Phys Rev Lett 94:220403Google Scholar
  7. Devetak I, Harrow AW, Winter AJ (2004) A family of quantum protocols. Phys Rev Lett 93(23):230504Google Scholar
  8. Devetak I, Harrow AW, Winter AJ (2008) A resource framework for quantum Shannon theory. IEEE Trans Inf Theory 54(10):4587–4618Google Scholar
  9. Einstein A, Podolsky B, Rosen N (1935) Can quantum-mechanical description of physical reality be considered complete? Phys Rev 41:777–780Google Scholar
  10. Gleason AM (1957) Measures on the closed subspaces of a Hilbert space. J Math Mech 6:885MathSciNetzbMATHGoogle Scholar
  11. Jauch JM, Piron C (1963) Can hidden variables be excluded in quantum mechanics? Helv Phys Acta 36:827MathSciNetzbMATHGoogle Scholar
  12. Kochen S, Specker E (1967) The problem of hidden variables in quantum mechanics. J Math Mech 17(1):59–87Google Scholar
  13. Popescu S, Rohrlich D (1994) Quantum nonlocality as an axiom. Found Phys 24:379–385Google Scholar
  14. Rabin M (1981) How to exchange secrets by oblivious transfer. Technical Report TR-81, Harvard Aiken Computation LaboratoryGoogle Scholar
  15. Specker E (1960) Die Logik nicht gleichzeitig entscheidbarer Aussagen. Dialectica 14:239–246MathSciNetCrossRefGoogle Scholar
  16. Toner B, Bacon D (2003) Communication cost of simulating Bell correlations. Phys Rev Lett 91(18):187904Google Scholar
  17. von Neumann J (1955) Mathematische Grundlagen der Quanten-Mechanik. Verlag Julius-Springer, Berlin, 1932. Mathematial foundations of quantum mechanics. Princeton University, PrincetonGoogle Scholar
  18. Wiesner S (1983) Conjugate coding. Sigact News 15(1):78–88Google Scholar
  19. Wolf S, Wullschleger J (2006) Oblivious transfer is symmetric. In: Advances in cryptology—EUROCRYPT ’06, volume 4004 of Lecture Notes in Computer Science. Springer, pp 222–232Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Nicolas Gisin
    • 1
  • Sandu Popescu
    • 2
  • Valerio Scarani
    • 3
  • Stefan Wolf
    • 4
  • Jürg Wullschleger
    • 5
  1. 1.Group of Applied PhysicsUniversity of GenevaGeneva 4Switzerland
  2. 2.H. H. Wills Physics LaboratoryUniversity of BristolBristolUK
  3. 3.Centre for Quantum TechnologiesNational University of SingaporeSingaporeSingapore
  4. 4.Faculty of InformaticsUniversity of LuganoLuganoSwitzerland
  5. 5.Department of MathematicsUniversity of BristolBristolUK

Personalised recommendations