Natural Computing

, Volume 12, Issue 2, pp 277–289 | Cite as

Fault tolerant network design inspired by Physarum polycephalum

  • Maarten HoubrakenEmail author
  • Sofie Demeyer
  • Dimitri Staessens
  • Pieter Audenaert
  • Didier Colle
  • Mario Pickavet


Physarum polycephalum, a true slime mould, is a primitive, unicellular organism that creates networks to transport nutrients while foraging. The design of these natural networks proved to be advanced, e.g. the slime mould was able to find the shortest path through a maze. The underlying principles of this design have been mathematically modelled in literature. As in real life the slime mould can design fault tolerant networks, its principles can be applied to the design of man-made networks. In this paper, an existing model and algorithm are adapted and extended with stimulation and migration mechanisms which encourage formation of alternative paths, optimize edge positioning and allow for automated design. The extended model can then be used to better design fault tolerant networks. The extended algorithm is applied to several national and international network configurations. Results show that the extensions allow the model to capture the fault tolerance requirements more accurately. The resulting extended algorithm overcomes weaknesses in geometric graph design and can be used to design fault tolerant networks such as telecommunication networks with varying fault tolerance requirements.


Bio-inspired algorithm Fault tolerant network design Mathematical modelling Network optimization Physarum polycephalum 


  1. Adamatzky A (2009) From reaction-diffusion to Physarum computing. Nat Comput 8:431–447MathSciNetzbMATHCrossRefGoogle Scholar
  2. Adamatzky A (2010) Physarum machines. World Scientific Publishing Company, SingaporeGoogle Scholar
  3. Adamatzky A (2011) Approximating mexican highways with slime mould. Nat Comput 10:1195–1214MathSciNetCrossRefGoogle Scholar
  4. Adamatzky A, Alonso-Sanz R (2011) Rebuilding Iberian motorways with slime mould. BioSystems 105:89–100CrossRefGoogle Scholar
  5. Batchelor G (2000) An introduction to fluid dynamics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  6. Becker M (2011) Design of fault tolerant networks with agent-based simulation of Physarum polycephalum. In: IEEE congress evolutionary computation, pp 285–291Google Scholar
  7. Casier K, Verbrugge S, Meersman R, Colle D, Pickavet M, Demeester P (2008) A clear and balanced view on FTTH deployment costs. J Inst Telecommun Prof 2:27–30Google Scholar
  8. Dussutour A, Latty T, Beekman M, Simpson SJ (2010) Amoeboid organism solves complex nutritional challenges. Proc Natl Acad Sci USA 107(10):4607–4611CrossRefGoogle Scholar
  9. Gotoh K, Kuroda K (1982) Motive force of cytoplasmic streaming during plasmodial mitosis of Physarum polycephalum. Cell Motil 2:173–181CrossRefGoogle Scholar
  10. Jaromczyk JW, Toussaint GT (1992) Relative neighborhood graphs and their relatives. In: Proceedings of IEEE, pp 1502–1517Google Scholar
  11. Jones J (2009) Approximating the behaviours of Physarum polycephalum for the construction and minimisation of synthetic transport networks. In: Unconventional computing, proceedings. Lecture notes in computer science, vol 5715. Springer, pp 191–208Google Scholar
  12. Jones J, Adamatzky A (2010) Towards Physarum binary adders. BioSystems 101:51–58CrossRefGoogle Scholar
  13. Kamiya N (1959) Protoplasmic streaming. Springer-Verlag, ViennaCrossRefGoogle Scholar
  14. Kobayashi R, Tero A, Nakagaki T (2006) Mathematical model for rhythmic protoplasmic movement in the true slime mold. J Math Biol 53:273–286MathSciNetzbMATHCrossRefGoogle Scholar
  15. Krishnamoorthy M, Krishnamurthy B (1987) Fault diameter of interconnection networks. Comput Math Appl 13:577–582MathSciNetzbMATHCrossRefGoogle Scholar
  16. Latty T, Beekman M (2009) Food quality affects search strategy in the acellular slime mould, Physarum polycephalum. Behav Ecol 20(6):1160–1167CrossRefGoogle Scholar
  17. Miranda ER, Adamatzky A, Jones J (2011) Sounds synthesis with slime mould of Physarum polycephalum. J Bionic Eng 8(2):107–113CrossRefGoogle Scholar
  18. Nakagaki T, Yamada H, Tóth A (2000) Maze-solving by an amoeboid organism. Nature 407:470CrossRefGoogle Scholar
  19. Nakagaki T, Yamada H, Tóth H (2001) Path finding by tube morphogenesis in an amoeboid organism. Biophys Chem 92:47–52CrossRefGoogle Scholar
  20. Nakagaki T, Kobayashi R, Nishiura Y, Ueda T (2004a) Obtaining multiple separate food sources: behavioural intelligence in the Physarum plasmodium. Proc R Soc Lond B 271:2305–2310Google Scholar
  21. Nakagaki T, Yamada H, Hara M (2004b) Smart network solutions in an amoeboid organism. Biophys Chem 107:1–5CrossRefGoogle Scholar
  22. Orlowski S, Wessäly R, Pióro M, Tomaszewski A (2010) SNDlib 1.0 survivable network design library. Networks 55(3):276–286Google Scholar
  23. Pickavet M, Demeester P, Colle D, Staessens D, Puype B, Depré L, Lievens I (2006) Recovery in multilayer optical networks. J Lightwave Technol 24(1):122–134CrossRefGoogle Scholar
  24. Saigusa T, Tero A, Nakagaki T, Kuramoto Y (2008) Amoebae anticipate periodic events. Phys Rev Lett 100(1):018101Google Scholar
  25. Tero A, Kobayashi R, Nakagaki T (2005) A coupled-oscillator model with a conservation law for the rhythmic amoeboid movements of plasmodial slime molds. Phys D 205:125–135zbMATHCrossRefGoogle Scholar
  26. Tero A, Kobayashi R, Nakagaki T (2007) A mathematical model for adaptive transport network in path finding by true slime mold. J Theor Biol 244:553–564MathSciNetCrossRefGoogle Scholar
  27. Tero A, Yumiki K, Kobayashi R, Saigusa T, Nakagaki T (2008) Flow-network adaptation in Physarum amoebae. Theory Biosci 127(2):89–94CrossRefGoogle Scholar
  28. Tero A, Takagi S, Saigusa T, Ito K, Bebber DP, Fricker MD, Yumiki K, Kobayashi R, Nakagaki T (2010) Rules for biologically inspired adaptive network design. Science 327:439–442MathSciNetzbMATHCrossRefGoogle Scholar
  29. Toussaint GT (1980) The relative neighbourhood graph of a finite planar set. Pattern Recognit 12:261–268MathSciNetzbMATHCrossRefGoogle Scholar
  30. Tsuda S, Aono M, Gunji YP (2004) Robust and emergent Physarum logical-computing. BioSystems 73:45–55CrossRefGoogle Scholar
  31. Vasseur J, Pickavet M, Demeester P (2004) Network recovery: protection and restoration of optical, SONET-SDH, IP, and MPLS. Morgan Kaufmann Publishers, BurlingtonGoogle Scholar
  32. Watanabe S, Tero A, Takamatsu A, Nakagaki T (2011) Traffic optimization in railroad networks using an algorithm mimicking an amoeba-like organism, Physarum plasmodium. BioSystems 105(3):225–232CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Maarten Houbraken
    • 1
    Email author
  • Sofie Demeyer
    • 1
  • Dimitri Staessens
    • 1
  • Pieter Audenaert
    • 1
  • Didier Colle
    • 1
  • Mario Pickavet
    • 1
  1. 1.Department of Information TechnologyGhent UniversityGhentBelgium

Personalised recommendations