Natural Computing

, Volume 11, Issue 2, pp 289–302 | Cite as

A study on learning robustness using asynchronous 1D cellular automata rules

Article

Abstract

Numerous studies can be found in literature concerning the idea of learning cellular automata (CA) rules that perform a given task by means of machine learning methods. Among these methods, genetic algorithms (GAs) have often been used with excellent results. Nevertheless, few attention has been dedicated so far to the generality and robustness of the learned rules. In this paper, we show that when GAs are used to evolve asynchronous one-dimensional CA rules, they are able to find more general and robust solutions compared to the more usual case of evolving synchronous CA rules.

Keywords

Cellular automata Machine learning Genetic algorithms 

References

  1. Balister P, Bollobás B, Kozma R (2006) Large deviations for mean fields models of probabilistic cellular automata. Random Struct Algorithms 29(1):339–415Google Scholar
  2. Bandini S, Vanneschi L, Wuensche A, Shehata AB (2008) A neuro-genetic framework for pattern recognition in complex systems. Fundam Inf 87(2):207–226Google Scholar
  3. Bersini H, Detours V (1994) Asynchrony induces stability in cellular automata based models. In: Proceedings of artificial life IV. MIT Press, Cambridge, pp 382–387Google Scholar
  4. Blok H, Bergersen B (1999) Synchronous versus asynchronous updating in the game of life. Phys Rev E 59:3876–3879CrossRefGoogle Scholar
  5. Bouré O, Fatès N, Chevrier V (2011) Robustness of cellular automata in the light of asynchronous information transmission. Technical Research Report, MAIA-INRIA Lorraine-LORIA-INRIA-CNRS: UMR7503—Université Henri Poincaré-Nancy I–Université Nancy II—Institut National Polytechnique de LorraineGoogle Scholar
  6. Buvel RL, Ingerson TE (1984) Structure in asynchronous cellular automata. Physica D 1(1):59–68MathSciNetGoogle Scholar
  7. Capcarrère MS (2002) Evolution of asynchronous cellular automata. In: Proceedings of the 7th international conference on parallel problem solving from nature, PPSN VII. Springer, London, pp 903–912Google Scholar
  8. Chopard B, Droz M (1998) Cellular automata modeling of physical systems. Cambridge University Press, CambridgeMATHCrossRefGoogle Scholar
  9. Cornforth D, Green DG, Newth D (2005) Ordered asynchronous processes in multi-agent systems. Physica D 204(1–2):70–82MathSciNetCrossRefGoogle Scholar
  10. Fatés N, Morvan M (2005) An experimental study of robustness to asynchronism for elementary cellular automata. Complex Syst 16(1):1–27Google Scholar
  11. Fatés N, Morvan M, Schabanel N, Thierry E (2005) Asynchronous behaviour of double-quiescent elementary cellular automata. In: Jedrzejowicz J, Szepietowski A (eds) MFCS 2005, LNCS. Springer, Heidelberg, pp 316–327Google Scholar
  12. Fatés N, Regnault D, Schabanel N, Thierry E (2006) Asynchronous behaviour of double-quiescent elementary cellular automata. In: Correa JR et al (eds) LATIN 2006, LNCS. Springer, HeidelbergGoogle Scholar
  13. Fukś H (2002) Non-deterministic density classification with diffusive probabilistic cellular automata. Phys Rev E 66(2)Google Scholar
  14. Fukś H (2004) Probabilistic cellular automata with conserved quantities. Nonlinearity 17(1):159–173MathSciNetMATHCrossRefGoogle Scholar
  15. Gács P (1986) Reliable computation with cellular automata. J Comput Syst Sci 32(1):15–78MATHCrossRefGoogle Scholar
  16. Gács P (2001) Reliable cellular automata with self-organization. J Stat Phys 103(1/2):45–267MATHCrossRefGoogle Scholar
  17. Gács P, Reif J (1988) A simple three-dimensional real-time reliable cellular array. J Comput Syst Sci 36(2):125–149MATHCrossRefGoogle Scholar
  18. Ganguly N, Maji P, Dhar S, Sikdar B, Chaudhuri P (2002) Evolving cellular automata as pattern classifier. In: Proceedings of fifth international conference on cellular automata for research and industry. ACRI 2002, Switzerland, pp 56–68Google Scholar
  19. Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, ReadingMATHGoogle Scholar
  20. Holland JH (1975) Adaptation in natural and artificial systems. The University of Michigan Press, Ann ArborGoogle Scholar
  21. Ibarra O, Palis M, Kim S (1985) Fast parallel language recognition by cellular automata. Theor Comput Sci 41(2–3):231–246MathSciNetMATHCrossRefGoogle Scholar
  22. Jeanson F (2008) Evolving asynchronous cellular automata for density classification. In: Bullock S et al (eds) Artificial life XI: proceedings of the eleventh international conference on the simulation and synthesis of living systems. MIT Press, Cambridge, pp 282–288Google Scholar
  23. Lumer ED, Nicolis G (1994) Synchronous versus asynchronous dynamics in spatially distributed systems. Physica D 71(1):440–452MATHCrossRefGoogle Scholar
  24. Maji P, Shaw C, Ganguly N, Sikdar BK, Chaudhuri PP (2003) Theory and application of cellular automata for pattern classification. Fundam Inf 58(3–4):321-354MathSciNetMATHGoogle Scholar
  25. Mitchell T (1996) Machine learning. McGraw Hill, New YorkMATHGoogle Scholar
  26. Mitchell M, Crutchfield J, Das R (1996) Evolving cellular automata with genetic algorithms: a review of recent work. In: Proceedings of the first international conference on evolutionary computation and its applications (EvCA 96)Google Scholar
  27. Nehaniv CL (2003) Evolution in asynchronous cellular automata. In: Proceedings of the eighth international conference on artificial life. MIT Press, Cambridge, pp 65–73Google Scholar
  28. Regnault D (2006) Abrupt behavior changes in cellular automata under asynchronous dynamics. In: Proceedings of 2nd European conference on complex systems (ECCS). Oxford, UKGoogle Scholar
  29. Regnault D, Schabanel N, Thierry E (2007) Progresses in the analysis of stochastic 2D cellular automata: a study of asynchronous 2D minority. In: Kucera L, Kucera A (eds) MFCS 2007, LNCS. Springer, HeidelbergGoogle Scholar
  30. Schönfish B, de Ross A (1999) Synchronous and asynchronous updating in cellular automata. BioSystems 51(1):123–143CrossRefGoogle Scholar
  31. Sipper M (1994) Non-uniform cellular automata: evolution in rule space and formation of complex structures. In: Brooks et al (eds) Proceedings of the 4th international workshop on the synthesis and simulation of living systems (artificial life IV). MIT Press, Cambridge, pp 394–399Google Scholar
  32. Sipper M (1996) Co-evolving non-uniform cellular automata to perform computations. Physica D 92(3–4):193–208MathSciNetMATHCrossRefGoogle Scholar
  33. Sipper M (1997) Evolution of parallel cellular machines: the Cellular Programming Approach. Springer, New YorkCrossRefGoogle Scholar
  34. Sipper M, Tomassini M, Capcarrere MS (1997) Evolving asynchronous and scalable non-uniform cellular automata. In: Proceedings of international conference on artificial neural networks and genetic algorithms (ICANNGA97). Springer, Vienna, pp 67–71Google Scholar
  35. Smith A III (1972) Real-time language recognition by one-dimensional cellular automata. J Comput Syst Sci 6(3):233–253MATHCrossRefGoogle Scholar
  36. Tomassini M, Venzi M (2002) Artificially evolved asynchronous cellular automata for the density task. In: ACRI ’01: proceedings of the 5th international conference on cellular automata for research and industry. Springer, London, pp 44–55Google Scholar
  37. Toom A (1980) Stable and attractive trajectories in multicomponent systems. Adv Probab 6(1):549–575MathSciNetGoogle Scholar
  38. Valsecchi A, Vanneschi L, Mauri G (2010) A study on the automatic generation of asynchronous cellular automata rules by means of genetic algorithms. In: Bandini S et al (eds) Proceedings of the international conference on cellular automata for research and industry, ACRI 2010, vol 6350 of lecture notes in computer science. Springer, Berlin, pp 429–438Google Scholar
  39. Wolfram S (2002) A new kind of science. Wolfram Media, ChampaignMATHGoogle Scholar
  40. Wuensche A (2004) Self-reproduction by glider collisions: the beehive rule. In: Pollack J et al (eds) International journal. MIT Press, Cambridge, pp 286–291Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Informatics, Systems and Communication (D.I.S.Co.)University of Milano-BicoccaMilanItaly
  2. 2.ISEGI, Universidade Nova de LisboaLisbonPortugal

Personalised recommendations