Natural Computing

, Volume 11, Issue 2, pp 277–287 | Cite as

An analysis of different types and effects of asynchronicity in cellular automata update schemes

  • Stefania Bandini
  • Andrea Bonomi
  • Giuseppe VizzariEmail author


This paper introduces the problematics deriving from the adoption of asynchronous update schemes in CA models. Several cellular automata update schemes and a tentative classification of such schemes are introduced and discussed. In order to analyze the effects of the different update schemes, a class of simple CA—called One neighbor binary cellular automata (1nCA)—is then introduced. An overview of the general features of 1nCA is described, then the effects of six different updates schemes on all the class of 1nCA are described.


Cellular automata Asynchronous CA Asynchronous CA update schemes 



The work presented in this paper has been partially funded by the University of Milano-Bicocca within the project “Fondo d’Ateneo per la Ricerca - anno 2010”.


  1. Bandini S, Manzoni S, Vizzari G (2005) Situated agents interaction: coordinated change of state for adjacent agents. In: Malyshkin VE (ed) PaCT, Lecture notes in computer science, vol 3606. Springer, Berlin, pp 114–128Google Scholar
  2. Bandini S, Vizzari G (2006) Regulation function of the environment in agent-based simulation. In: Weyns D, Parunak HVD, Michel F (eds) E4MAS, Lecture notes in computer science, vol 4389. Springer, Berlin, pp 157–169Google Scholar
  3. Binder P (1993) A phase diagram for elementary cellular automata. Complex Syst 7:241–247Google Scholar
  4. Binder P (1994) Parametric ordering of complex systems. Phys Rev E 49(3):2023–2025CrossRefGoogle Scholar
  5. Cornforth D, Green DG, Newth D (2005) Ordered asynchronous processes in multi-agent systems. Physica D 204(1–2):70–82MathSciNetCrossRefGoogle Scholar
  6. Darabos C, Giacobini M, Tomassini M (2007) Semi-synchronous activation in scale-free boolean networks. In: e Costa FA, Rocha LM, Costa E, Harvey I, Coutinho A (eds) ECAL, Lecture notes in computer science, vol 4648. Springer, Berlin, pp 976–985Google Scholar
  7. Fang L, Antsaklis P, Tzimas A (2005) Asynchronous consensus protocols: preliminary results, simulations and open questions. In: Decision and control, 2005 and 2005 European control conference. CDC-ECC ’05. 44th IEEE Conference, pp 2194–2199Google Scholar
  8. Fatès N (2003) Experimental study of elementary cellular automata dynamics using the density parameter. In: Morvan M, Rémila (eds) Discrete models for complex systems, DMCS’03, DMTCS proceedings. Discrete mathematics and theoretical computer science, vol AB, pp 155–166Google Scholar
  9. Fatès N, Morvan M (2005) An experimental study of robustness to asynchronism for elementary cellular automata. Complex Syst 16(1):1–27Google Scholar
  10. Gutowitz H, Victor JD, Knight BW (1987) Local structure theory for cellular automata. Physica D 28:18–48MathSciNetzbMATHCrossRefGoogle Scholar
  11. Kanada Y (1994) The effects of randomness in asynchronous 1d cellular automata (poster). Artificial Life IVGoogle Scholar
  12. Langton CG (1990) Computation at the edge of chaos. Physica D 42:12–37MathSciNetCrossRefGoogle Scholar
  13. Li W, Packard N (1990) The structure of the elementary cellular automata rule space. Complex Syst 4(3):281–297MathSciNetGoogle Scholar
  14. Li W, Packard N, Langton CG (1990) Transition phenomena in CA rule space. Physica D 45:77MathSciNetzbMATHCrossRefGoogle Scholar
  15. Mitchell M, Hraber PT, Crutchfield JP (1993) Revisiting the edge of chaos: evolving cellular automata to perform computations. Complex Syst 7:89–130zbMATHGoogle Scholar
  16. Page SE (1997) On incentives and updating in agent based models. Comput Econ 10:67–87zbMATHCrossRefGoogle Scholar
  17. Paolo EAD (2000) Searching for rhythms in asynchronous random boolean networks. In: Bedau M (ed) Alife VII: proceedings of the seventh international conference, MIT Press, Cambridge, pp 73–80Google Scholar
  18. Schönfisch B, de Roos A (1999) Synchronous and asynchronous updating in cellular automata. Biosystems 51(3):123–143CrossRefGoogle Scholar
  19. Sutner K (1990) Classifying circular CA. Physica D 45:386MathSciNetzbMATHCrossRefGoogle Scholar
  20. Vichniac GY (1990) Boolean derivatives on cellular automata. Phys D 45(1–3):63–74MathSciNetzbMATHCrossRefGoogle Scholar
  21. Wolfram S (1983) Cellular automata. Los Alamos Sci 9:2–21Google Scholar
  22. Wolfram S (1983) Statistical mechanics of cellular automata. Rev Mod Phys 55:601–644MathSciNetzbMATHCrossRefGoogle Scholar
  23. Wuensche A (1999) Classifying cellular automata automatically: finding gliders, filtering, and relating space-time patterns, attractor basins, and the Z parameter. Complexity 4(3):47–66MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Stefania Bandini
    • 1
  • Andrea Bonomi
    • 1
  • Giuseppe Vizzari
    • 1
    Email author
  1. 1.Complex Systems and Artificial Intelligence (CSAI) Research Center, Department of InformaticsSystems and Communication (DISCo), University of MilanMilanoItaly

Personalised recommendations