Natural Computing

, Volume 11, Issue 1, pp 107–115 | Cite as

Faster synchronization in P systems

Article

Abstract

In the field of molecular computing, in particular P systems, synchronization is an important requirement for composing or sequentially linking together congenial P system activities. We provide a deterministic algorithm to the Firing Squad Synchronization Problem, for digraph-based P systems, which runs in 3e + 11 steps, where e is the eccentricity of the general. Our algorithm uses a convenient framework, called simple P modules, which embraces the essential features of several popular types of P systems.

Keywords

Cellular automata P systems Simple P modules Firing squad synchronization 

References

  1. Alhazov A, Margenstern M, Verlan S (2008) Fast synchronization in P systems. In: Corne DW, Frisco P, Păun G, Rozenberg G, Salomaa A (eds) Workshop on membrane computing, volume 5391 of Lecture notes in computer science. Springer, New York, pp 118–128Google Scholar
  2. Balzer R (1967) An 8-state minimal time solution to the firing squad synchronization problem. Inf Control 10(1):22–42MathSciNetCrossRefGoogle Scholar
  3. Bernardini F, Gheorghe M, Margenstern M, Verlan S (2008) How to synchronize the activity of all components of a P system? Int J Found Comput Sci 19(5):1183–1198MathSciNetMATHCrossRefGoogle Scholar
  4. Dinneen MJ, Kim Y-B, Nicolescu R (2009) New solutions to the firing squad synchronization problems for neural and hyperdag P systems. Electron Proc Theor Comput Sci 11:107–122CrossRefGoogle Scholar
  5. Dinneen MJ, Kim Y-B, Nicolescu R (2010a) Edge- and node-disjoint paths in P systems. Electron Proc Theor Comput Sci 40:121–141CrossRefGoogle Scholar
  6. Dinneen MJ, Kim Y-B, Nicolescu R (2010b) P systems and the Byzantine agreement. J Log Algebr Program 79(6):334–349MathSciNetMATHCrossRefGoogle Scholar
  7. Dinneen MJ, Kim Y-B, Nicolescu R (2010c) Synchronization in P modules. In: Calude CS, Hagiya M, Morita K, Rozenberg G, Timmis J (eds) Unconventional computation, volume 6079 of Lecture notes in computer science. Springer, Berlin, pp 32–44Google Scholar
  8. Freeman RL (2005) Fundamentals of telecommunications, 2nd edn. Wiley-IEEE Press, New YorkCrossRefGoogle Scholar
  9. Goto E (1962) A minimal time solution of the firing squad problem. Course notes for applied mathematics, vol 298. Harvard University, Cambridge, pp 52–59Google Scholar
  10. Grefenstette JJ (1983) Network structure and the firing squad synchronization problem. J Comput Syst Sci 26(1):139–152MathSciNetMATHCrossRefGoogle Scholar
  11. Humphrey TC (2005) Cell cycle control: mechanisms and protocols. Humana Press, TotowaGoogle Scholar
  12. Imai K, Morita K, Sako K (2002) Firing squad synchronization problem in number-conserving cellular automata. Fundam Inform 52(1–3):133–141MathSciNetMATHGoogle Scholar
  13. Kobayashi K and Goldstein D (2005) On formulations of firing squad synchronization problems. In: Calude CS, Dinneen MJ, Păun G, Pérez-Jiménez MJ, Rozenberg G (eds) Unconventional computation, 4th international conference, UC 2005, Sevilla, Spain, October 3–7, 2005, proceedings, volume 3699 of Lecture notes in computer science. Springer, New York, pp 157–168Google Scholar
  14. Mazoyer J (1987) A six-state minimal time solution to the firing squad synchronization problem. Theor Comput Sci 50:183–238MathSciNetMATHCrossRefGoogle Scholar
  15. Moore EF (1964) The firing squad synchronization problem. In: Moore EF (ed) Sequential machines, selected papers. Addison-Wesley, Reading, pp 213–214Google Scholar
  16. Nishitani Y, Honda N (1981) The firing squad synchronization problem for graphs. Theor Comput Sci 14:39–61MathSciNetMATHCrossRefGoogle Scholar
  17. Păun G (2006) Introduction to membrane computing. In: Ciobanu G, Pérez-Jiménez MJ, Păun G (eds) Applications of membrane computing. Natural computing series. Springer, New York, pp 1–42Google Scholar
  18. Schmid H, Worsch T (2004) The firing squad synchronization problem with many generals for one-dimensional CA. In: Lévy J-J, Mayr EW, Mitchell JC (eds) IFIP TCS. Kluwer, Dordrecht, pp 111–124Google Scholar
  19. Szwerinski H (1982) Time-optimal solution of the firing-squad-synchronization-problem for n-dimensional rectangles with the general at an arbitrary position. Theor Comput Sci 19(3):305–320MathSciNetMATHCrossRefGoogle Scholar
  20. Umeo H, Hisaoka M, Akiguchi S (2005) A twelve-state optimum-time synchronization algorithm for two-dimensional rectangular cellular arrays. In: Calude CS, Dinneen MJ, Păun G, Pérez-Jiménez MJ, Rozenberg G (eds) Unconventional computation, 4th international conference, UC 2005, Sevilla, Spain, October 3–7, 2005, proceedings, volume 3699 of Lecture notes in computer science. Springer, New York, pp 214–223Google Scholar
  21. Waksman A (1966) An optimum solution to the firing squad synchronization problem. Inf Control 9(1):66–78MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Michael J. Dinneen
    • 1
  • Yun-Bum Kim
    • 1
  • Radu Nicolescu
    • 1
  1. 1.Department of Computer ScienceUniversity of AucklandAucklandNew Zealand

Personalised recommendations