Natural Computing

, 10:1195 | Cite as

Approximating Mexican highways with slime mould

  • Andrew Adamatzky
  • Genaro J. Martínez
  • Sergio V. Chapa-Vergara
  • René Asomoza-Palacio
  • Christopher R. Stephens


Plasmodium of Physarum polycephalum is a single cell visible by unaided eye. During its foraging behavior the cell spans spatially distributed sources of nutrients with a protoplasmic network. The geometrical structure of the protoplasmic networks allows the plasmodium to optimize transport of nutrients between remote parts of its body. Assuming major Mexican cities are sources of nutrients that need to be distributed across Mexico, how much does the structure of the Physarum protoplasmic network correspond to the structure of Mexican Federal highway network? To address the issue we undertook a series of laboratory experiments with living P. polycephalum. We represent geographical locations of major cities (19 locations) by oat flakes, place a piece of plasmodium in the area corresponding to Mexico city, record the plasmodium’s foraging behavior and extract topology of the resulting nutrient transport networks. Results of our experiments show that the protoplasmic network formed by Physarum is isomorphic, subject to limitations imposed, to a network of principal highways. Ideas and results in the paper may contribute towards future developments in bio-inspired road planning.


Bio-inspired computing Physarum polycephalum Pattern formation Mexican highways Road planning 


  1. Achenbach F, Weisenseel MH (1981) Ionic currents traverse the slime mould Physarum. Cell Biol Int Rep 5:375–379Google Scholar
  2. Adamatzky A (2007) From reaction-diffusion to Physarum computing. Invited talk at Los Alamos Lab workshop “Unconventional Computing: Quo Vadis?” March 2007, Santa Fe, NMGoogle Scholar
  3. Adamatzky A (2009a) Developing proximity graphs by Physarum polycephalum: does the plasmodium follow the Toussaint hierarchy? Parallel Process Lett 19:105–127Google Scholar
  4. Adamatzky A (2009b) If BZ medium did spanning trees these would be the same trees as Physarum built. Phys Lett A 373:952–956Google Scholar
  5. Adamatzky A (2009c) Hot ice computer. Phys Lett A 374:264–271CrossRefGoogle Scholar
  6. Adamatzky A (2010a) Physarum machines: making computers from slime mould. World Scientific, HackensackCrossRefGoogle Scholar
  7. Adamatzky A (2010b) Routing Physarum with repellents. Eur Phys J E Soft Matter Biol Phys 31:403–410CrossRefGoogle Scholar
  8. Adamatzky A, Jones J (2010) Road planning with slime mould: if Physarum built motorways it would route M6/M74 through Newcastle. Int J Bifurcat Chaos (in print).
  9. Adamatzky A, De Lacy Costello B, Asai T (2005) Reaction-diffusion computers. Elsevier, AmsterdamGoogle Scholar
  10. Billiot JM, Corset F, Fontenas E (2010) Continuum percolation in the relative neighborhood graph. arXiv:1004.5292Google Scholar
  11. Carlile MJ (1970) Nutrition and chemotaxis in the myxomycete Physarum polycephalum: the effect of carbohydrates on plasmodium. J Gen Microbiol 63:221–226Google Scholar
  12. Chet I, Naveh A, Henis Y (1977) Chemotaxis of Physarum polycephalum towards carbohydrates, amino acids and nucleotides. J Gen Microbiol 102:145–148Google Scholar
  13. Coman RD (1940) Additional observations on positive and negative chemotaxis. Experiments with a myxomycete. Arch Pathol 29:220–228Google Scholar
  14. Dorigo M, Stutzle T (2004) Ant colony optimization. MIT Press, CambridgeMATHCrossRefGoogle Scholar
  15. Gabriel KR, Sokal RR (1969) A new statistical approach to geographic variation analysis. Syst Zool 18:259–278CrossRefGoogle Scholar
  16. Jaromczyk JW, Toussaint GT (1992) Relative neighborhood graphs and their relatives. Proc IEEE 80:1502–1517CrossRefGoogle Scholar
  17. Jarrett TC, Ashton DJ, Fricker M, Johnson NF (2006) Interplay between function and structure in complex networks. Phys Rev E 74:026116MathSciNetCrossRefGoogle Scholar
  18. Kincaid RL, Mansour E (1978) Chemotaxis toward carbohydrates and amino acids in Physarum polycephalum. Exp Cell Res 116:377–385CrossRefGoogle Scholar
  19. Kirkpatrick DG, Radke JD (1985) A framework for computational morphology. In: Toussaint G (ed) Computational geometry. Elsevier, Amsterdam, pp 217–248Google Scholar
  20. Knowles DJC, Carlile MJ (1978) The chemotactic response of plasmodia of the myxomycete Physarum polycephalum to sugars and related compounds. J Gen Microbiol 108:17–25Google Scholar
  21. Li X-Y (2004) Application of computation geometry in wireless networks. In: Cheng X, Huang X, Du D-Z (eds) Ad hoc wireless networking. Kluwer Academic Publishers, Dordrecht, pp 197–264Google Scholar
  22. Matula DW, Sokal RR (1984) Properties of Gabriel graphs relevant to geographical variation research and the clustering of points in the same plane. Geogr Anal 12:205–222CrossRefGoogle Scholar
  23. McClory A, Coote JG (1985) The chemotactic response of the myxomycete Physarum polyhcepalum to amino acids, cyclic nucleotides and folic acid. FEMS Microbiol Lett 26:195–200CrossRefGoogle Scholar
  24. Muhammad RB (2007) A distributed graph algorithm for geometric routing in ad hoc wireless networks. J Netw 2:49–57Google Scholar
  25. Nakagaki T, Yamada H, Ueda T (1999) Modulation of cellular rhythm and photoavoidance by oscillatory irradiation in the Physarum plasmodium. Biophys Chem 82:23–28CrossRefGoogle Scholar
  26. Nakagaki T, Yamada H, Toth A (2001) Path finding by tube morphogenesis in an amoeboid organism. Biophys Chem 92:47–52CrossRefGoogle Scholar
  27. Reyes DR, Ghanem MG, George M (2002) Glow discharge in micro fluidic chips for visible analog computing. Lab Chip 1:113–116CrossRefGoogle Scholar
  28. Saigusa T, Tero A, Nakagaki T, Kuramoto Y (2008) Amoebae anticipate periodic events. Phys Rev Lett 100:018101Google Scholar
  29. Santi P (2005) Topology control in wireless ad hoc and sensor networks. Wiley, New YorkCrossRefGoogle Scholar
  30. Schumann A, Adamatzky A (2009) Physarum spatial logic. In: Proceedings of the first international symposium on symbolic and numeric algorithms for scientific computing, September 26–29, 2009. Timisoara, RomaniaGoogle Scholar
  31. Shirakawa T, Adamatzky A, Gunji Y-P, Miyake Y (2009) On simultaneous construction of Voronoi diagram and Delaunay triangulation by Physarum polycephalum. Int J Bifurcat Chaos 19:3109–3117Google Scholar
  32. Song W-Z, Wang Y, Li X-Y (2004) Localized algorithms for energy efficient topology in wireless ad hoc networks. In: Proceedings of the MobiHoc, May 24–26, 2004. Roppongi, JapanGoogle Scholar
  33. Sridharan M, Ramasamy AMS (2010) Gabriel graph of geomagnetic Sq variations. Acta Geophys. doi:10.2478/s11600-010-0004-y
  34. Tero A, Kobayashi R, Nakagaki T (2006) Physarum solver: a biologically inspired method of road-network navigation. Physica A 363:115–119CrossRefGoogle Scholar
  35. Toussaint GT (1980) The relative neighborhood graph of a finite planar set. Pattern Recognit 12:261–268MathSciNetMATHCrossRefGoogle Scholar
  36. Tsuda S, Aono M, Gunji Y-P (2004) Robust and emergent Physarum logical-computing. Biosystems 73:45–55CrossRefGoogle Scholar
  37. Tsuda S, Zauner K-P, Gunji Y-P (2007) Robot control with bio-logical cells. BioSystems 87:215–223CrossRefGoogle Scholar
  38. Ueda T, Muratsugu M, Kurihara K, Kobatake Y (1976) Chemotaxis in Physarum polycephalum: effects of chemicals on isometric tension of the plasmodial strand in relation to chemotactic movement. Exp Cell Res 100:337–344CrossRefGoogle Scholar
  39. Wan P-J, Yi C-W (2007) On the longest edge of Gabriel graphs in wireless ad hoc networks. IEEE Trans Parallel Distrib Syst 18:111–125CrossRefGoogle Scholar
  40. Watanabe D (2005) A study on analyzing the road network pattern using proximity graphs. J City Plan Inst Jpn 40:133–138Google Scholar
  41. Watanabe D (2008) Evaluating the configuration and the travel efficiency on proximity graphs as transportation networks. Forma 23:81–87MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Andrew Adamatzky
    • 1
  • Genaro J. Martínez
    • 1
    • 2
  • Sergio V. Chapa-Vergara
    • 3
  • René Asomoza-Palacio
    • 3
  • Christopher R. Stephens
    • 2
  1. 1.Unconventional Computing CentreUniversity of the West of EnglandBristolUK
  2. 2.Instituto de Ciencias Nucleares and Centro de Ciencias de la ComplejidadUniversidad Nacional Autónoma de MéxicoMexicoMexico
  3. 3.Ingeniería Eléctrica, Departamento de ComputaciónCentro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexicoMexico

Personalised recommendations