Natural Computing

, Volume 10, Issue 1, pp 429–445 | Cite as

Complexity-preserving simulations among three variants of accepting networks of evolutionary processors

  • Paolo Bottoni
  • Anna Labella
  • Florin Manea
  • Victor Mitrana
  • Ion Petre
  • Jose M. Sempere


In this paper we consider three variants of accepting networks of evolutionary processors. It is known that two of them are equivalent to Turing machines. We propose here a direct simulation of one device by the other. Each computational step in one model is simulated in a constant number of computational steps in the other one while a translation via Turing machines squares the time complexity. We also discuss the possibility of constructing simulations that preserve not only complexity, but also the shape of the simulated network.


Evolutionary processor Uniform evolutionary processor Network of evolutionary processors Filtered connection 



This work was supported by the Academy of Finland, projects 132727, 122426, and 108421. F. Manea acknowledges the support from the Alexander von Humboldt Foundation. J Sempere acknowledges the support from the Spanish Ministerio de Educación y Ciencia project TIN2007-60769.


  1. Alhazov A, Bel Enguix G, Rogozhin Y (2009a) Obligatory hybridnetworks of evolutionary processors. In: International conference on agents and artificial intelligence (ICAART 2009), pp 613–618Google Scholar
  2. Alhazov A, Csuhaj-Varj E, Martn-Vide C, Rogozhin Y (2009b) On the size of computationally complete hybrid networks ofevolutionaryprocessors. Theor Comput Sci 410:3188–3197MATHCrossRefGoogle Scholar
  3. Bottoni P, Labella A, Manea F, Mitrana V, Sempere J (2009a) Filter position in networks of evolutionary processors does not matter: a direct proof. In: Proc. 15th international meeting on DNA computing and molecular programming. 8–11 June 2009, Fayetteville, ArkansasGoogle Scholar
  4. Bottoni P, Labella A, Mitrana V, Sempere JM (2009b) Networks of evolutionary picture processors with filtered connections. In: Unconventional computation, 8th international conference (UC 2009), LNCS, vol 5715. Springer, Heidelberg, pp 70–84 Google Scholar
  5. Castellanos J, Martín-Vide C, Mitrana V, Sempere J (2001) Solving NP-complete problems with networks of evolutionary processors. In: International work-conference on artificial and natural neural networks (IWANN 2001), Lecture notes in computer science, vol 2084, pp 621–628Google Scholar
  6. Csuhaj-Varjú E, Mitrana V (2000) Evolutionary systems: a language generating device inspired by evolving communities of cells. Acta Inform 36:913–926MathSciNetMATHCrossRefGoogle Scholar
  7. Csuhaj-Varjú E, Salomaa A (1997) Networks of parallel language processors. In: New trends in formal languages, Lecture notes in computer science, vol 1218, pp 299–318Google Scholar
  8. Dassow J, Truthe B (2007) On the power of networks of evolutionary processors. In: Machines, computations, and universality (MCU 2007), Lecture notes in computer science, vol 4667, pp 158–169Google Scholar
  9. Drăgoi C, Manea F (2008) On the descriptional complexity of accepting networks of evolutionary processors with filtered connections. Int J Found Comput Sci 19:1113–1132MATHCrossRefGoogle Scholar
  10. Drăgoi C, Manea F, Mitrana V (2007) Accepting networks of evolutionary processors with filtered connections. J Univers Comput Sci 13:1598–1614MATHGoogle Scholar
  11. Errico L, Jesshope C (1994) Towards a new architecture for symbolic processing. In: Artificial intelligence and information-control systems of robots ’94, World Scientific, Singapore, pp 31–40Google Scholar
  12. Fahlman SE, Hinton GE, Seijnowski TJ (1983) Massively parallel architectures for AI: NETL, THISTLE and Boltzmann machines. In: Proc. of the national conference on artificial intelligence, pp 109–113Google Scholar
  13. Hillis W (1985) The connection machine. MIT Press, CambridgeGoogle Scholar
  14. Manea F, Martin-Vide C, Mitrana V (2007) On the size complexity of universal accepting hybrid networks of evolutionary processors. Math Struct Comput Sci 17:753–771MathSciNetMATHCrossRefGoogle Scholar
  15. Margenstern M, Mitrana V, Perez-Jimenez M (2005) Accepting hybrid networks of evolutionary systems. In: DNA based computers 10, Lecture notes in computer science, vol, pp 235–246Google Scholar
  16. Martín-Vide C, Mitrana V (2005) Networks of evolutionary processors: results and perspectives. In: Molecular computational models: unconventional approaches. dea Group Publishing, Hershey, pp 78–114Google Scholar
  17. Păun G (2000) Computing with membranes. J Comput Syst Sci 61:108–143MATHCrossRefGoogle Scholar
  18. Păun G, Sântean L (1989) Parallel communicating grammar systems: the regular case. Ann Univ Bucharest Ser Matematica Inform 38:55–63MATHGoogle Scholar
  19. Rozenberg G, Salomaa A (eds) (1997) Handbook of formal languages. Springer–Verlag, BerlinMATHGoogle Scholar
  20. Sankoff D et al. (1992) Gene order comparisons for phylogenetic inference: evolution of the mitochondrial genome. Proc Natl Acad Sci USA 89:6575–6579CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Paolo Bottoni
    • 1
  • Anna Labella
    • 1
  • Florin Manea
    • 2
  • Victor Mitrana
    • 3
    • 4
  • Ion Petre
    • 5
  • Jose M. Sempere
    • 6
  1. 1.Department of Computer Science“Sapienza” University of RomeRomeItaly
  2. 2.Faculty of Computer ScienceOtto-von-Guericke UniversityMagdeburgGermany
  3. 3.Faculty of MathematicsUniversity of BucharestBucharestRomania
  4. 4.Depto. Organización y Estructura de la InformaciónUniversidad Politécnica de MadridMadridSpain
  5. 5.Department of Information TechnologiesÅbo Akademi UniversityTurkuFinland
  6. 6.Department of Information Systems and ComputationTechnical University of ValenciaValenciaSpain

Personalised recommendations