Natural Computing

, Volume 10, Issue 2, pp 879–890 | Cite as

A software tool for generating graphics by means of P systems

  • Elena Rivero-Gil
  • Miguel Á. Gutiérrez-Naranjo
  • Álvaro Romero-JiménezEmail author
  • Agustín Riscos-Núñez


The hand-made graphical representation of the configuration of a P system becomes a hard task when the number of membranes and objects increases. In this paper we present a new software tool, called JPLANT, for computing and representing the evolution of a P system model with membrane creation. We also present some experiments performed with JPLANT and point out new lines for the research in computer graphics with membrane systems.


Membrane computing P systems Graphical representation Software 



The authors acknowledge the support of the project TIN2006-13425 of the Ministerio de Educación y Ciencia of Spain, cofinanced by FEDER funds, and the support of the project of excellence TIC-581 of the Junta de Andalucía.


  1. Ardelean II, Cavaliere M (2003) Modelling biological processes by using a probabilistic P system software. Nat Comput 2(2):173–197zbMATHCrossRefGoogle Scholar
  2. Georgiou A, Gheorghe M (2003) P systems used in plant graphics. In: Alhazov A, Martín-Vide C, Păun Gh (eds) Preproceedings of the workshop on membrane computing. Tarragona, SpainGoogle Scholar
  3. Georgiou A, Gheorghe M, Bernardini F (2006) Membrane-based devices used in computer graphics. In: Ciobanu G, Păun Gh, Pérez Jiménez MJ (eds) Applications of membrane computing. Springer, BerlinGoogle Scholar
  4. Ito M, Martín-Vide C, Păun Gh (2001) A characterization of parikh sets of ET0L languages in terms of P systems. In: Ito M, Păun Gh, Yu S (eds) Words, semigroups, and transductions. World Scientific, SingaporeCrossRefGoogle Scholar
  5. Lindenmayer A (1968) Mathematical models for cellular interaction in development, parts I and II. J Theor Biol 18:280–315CrossRefGoogle Scholar
  6. Madhu M, Krithivasan K (2001) P systems with membrane creation: universality and efficiency. In: Margenstern M, Rogozhin Y (eds) MCU 2001: machines, computations, and universality. Third international conference, Chişinău, Moldova, May 2001. Lecture notes in computer science, vol 2055. Springer, Berlin, pp 276–287Google Scholar
  7. Obtulowicz A, Păun Gh (2003) (In search of) probabilistic P systems. BioSystems 70(2):107–121CrossRefGoogle Scholar
  8. Pescini D, Besozzi D, Mauri G, Zandron C (2006) Dynamical probabilistic P systems. Int J Found Comput Sci 17(1):183–204MathSciNetzbMATHCrossRefGoogle Scholar
  9. Păun Gh (2002) Membrane computing. An introduction. Springer, BerlinzbMATHGoogle Scholar
  10. Romero-Jiménez Á, Gutiérrez-Naranjo MÁ, Pérez-Jiménez MJ (2006a) The growth of branching structures with P systems. In: Graciani Díaz C, Păun Gh, Romero Jiménez Á, Sancho Caparrini F (eds) Proceedings of the fourth brainstorming week on membrane computing, vol II. Sevilla, Spain, 2006Google Scholar
  11. Romero-Jiménez Á, Gutiérrez-Naranjo MÁ, Pérez-Jiménez MJ (2006b) Graphical modelling of higher plants using P systems. In: Hoogeboom HJ, Păun Gh, Rozenberg G, Salomaa A (eds) WMC 2006: membrane computing. Seventh international workshop, Leiden, The Netherlands, July 2006. Lecture notes in computer science, vol 4361. Springer, Berlin, pp 496–506Google Scholar
  12. Smith AR (1984) Plants, fractals and formal languages. Comput Graph 18(3):1–10CrossRefGoogle Scholar
  13. The P Systems Web Page (2009)

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Elena Rivero-Gil
    • 1
  • Miguel Á. Gutiérrez-Naranjo
    • 1
  • Álvaro Romero-Jiménez
    • 1
    Email author
  • Agustín Riscos-Núñez
    • 1
  1. 1.Departamento de Ciencias de la Computación e Inteligencia Artificial, Escuela Técnica Superior de Ingeniería InformáticaUniversidad de SevillaSevillaSpain

Personalised recommendations