Advertisement

Natural Computing

, Volume 10, Issue 1, pp 39–53 | Cite as

A computational modeling for real ecosystems based on P systems

  • Mónica Cardona
  • M. Angels ColomerEmail author
  • Antoni Margalida
  • Antoni Palau
  • Ignacio Pérez-Hurtado
  • Mario J. Pérez-Jiménez
  • Delfí Sanuy
Article

Abstract

In this paper, a P systems based general framework for modeling ecosystems dynamics is presented. Particularly, ecosystems are specified by means of multienvironment P systems composed of a finite number of environments, each of them having an extended P system with active membranes. The semantics is of a probabilistic type and it is implemented by assigning each rule of the system a probabilistic constant which depends on the environment and the run time. As a case study, two real ecosystems are described: scavenger birds in the Catalan Pyrenees and the zebra mussel (Dreissena Polymorpha) in Ribarroja reservoir (Spain).

Keywords

P-System Ecosystem Probabilistic Dynamics Scavenger Mussel 

Notes

Acknowledgement

The fifth and the sixth author acknowledges the support of the project TIN2009-13192 of the Ministerio de Ciencia e Innovación of Spain, cofinanced by FEDER funds as well as the support of the Project of Excellence with Investigador de Reconocida Valía of the Junta de Andalucía, grant P08-TIC-04200.

References

  1. Cardona M, Colomer MA, Pérez–Jiménez MJ, Sanuy D, Margalida A (2009a) Modelling ecosystems using P systems: the bearded vulture, a case of study. Lecture Notes in Computer Science 5391:137–156Google Scholar
  2. Cardona M, Colomer MA, Pérez Hurtado I, Pérez–Jiménez MJ, Sanuy D, Margalida A (2009b) A P system based model of an ecosystem of some scavenger birds. Proceeding of the 10th International Workshop on Membrane Computing, pp 153–168Google Scholar
  3. Cheruku S, Paun A, Romero FJ, Pérez-Jiménez MJ, Ibarra OH (2007) Simulating FAS-induced apoptosis by using P systems. Prog Nat Sci 17(4):424–431zbMATHCrossRefGoogle Scholar
  4. Fontana F, Manca V (2008) Predator–prey dynamics in P systems ruled by metabolic algorithm. BioSystems 91:545–557CrossRefGoogle Scholar
  5. García-Quismondo M, Gutiérrez–Escudero R, Martínez-del-Amor MA, Orejuela E, Pérez-Hurtado I (2009) P-Lingua 2.0: a software framework for cell-like P systems. Int J Comput Commun Control 4(3):234–243Google Scholar
  6. Jenner HA, Whitehouse JW, Taylos CJL, Khalanski M (1998) Cooling water management in European power stations. Biology and Control of fouling. Hidroecol Appl 10:1–2Google Scholar
  7. Lotka AJ (1925) Elements of physical biology. Reprinted by Dover in 1956 as Elements of Mathematical BiologyGoogle Scholar
  8. Palau A, Cía I, Fargas D, Bardina M, Massuti S (2003) Resultados preliminares sobre ecología básica y distribución del mejillón cebra en el embalse de Riba–Roja (río Ebro). UPH Ebro-Pirineos (ENDESA Generación) Dirección de Medio Ambiente y Desarrollo Sostenible (ENDESA Servicios)Google Scholar
  9. Romero FJ, Pérez-Jiménez MJ (2008a) A model of the Quorum Sensing System in Vibrio Fischeri using P systems. Artif Life 14(1):95–109CrossRefGoogle Scholar
  10. Romero FJ, Pérez-Jiménez MJ (2008b) Modelling gene expression control using P systems: the Lac Operon, a case study. BioSystems 91(3):438–457CrossRefGoogle Scholar
  11. Ruíz Altaba C, Jiménez PJ, López MA (2001) El temido mejillón cebra empieza a invadir los ríos españoles desde el curso bajo del río Ebro. Quercus 188:50–51Google Scholar
  12. Volterra V (1926a) Variazioni e fluttuazioni del numero d'individui in specie animali conviventi. Mem R Accad Naz dei Lincei 2:31–113Google Scholar
  13. Volterra V (1926b) Fluctuations in the abundance of a species considered mathematically. Nature 118:558–560Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Mónica Cardona
    • 1
  • M. Angels Colomer
    • 1
    Email author
  • Antoni Margalida
    • 2
  • Antoni Palau
    • 3
  • Ignacio Pérez-Hurtado
    • 4
  • Mario J. Pérez-Jiménez
    • 4
  • Delfí Sanuy
    • 5
  1. 1.Department of MathematicsUniversity of LleidaLleidaSpain
  2. 2.Bearded Vulture Study & Protection GroupEl Pont de Suert (Lleida)Spain
  3. 3.Dirección de Medio Ambiente y Desarrollo SostenibleEndesaSpain
  4. 4.Research Group on Natural Computing, Department of Computer Science and Artificial IntelligenceUniversity of SevillaSevillaSpain
  5. 5.Department of Animal ProductionUniversity of LleidaLleidaSpain

Personalised recommendations