Natural Computing

, Volume 10, Issue 1, pp 3–16 | Cite as

Spatial P systems

  • Roberto Barbuti
  • Andrea Maggiolo-Schettini
  • Paolo Milazzo
  • Giovanni Pardini
  • Luca Tesei
Article

Abstract

We present Spatial P systems, a variant of P systems which embodies the concept of space and position inside a membrane. Objects in membranes are associated with positions. Rules specify, in the usual way, the objects which are consumed and the ones which are produced; in addition, they can specify the positions of the produced objects. Objects belong to two different sets: the set of ordinary objects and the set of mutually exclusive objects. Every position inside a membrane can accommodate an arbitrary number of ordinary objects, but at most one mutually exclusive object. We prove that Spatial P systems are universal even if only non-cooperating rules are allowed. We also show how Spatial P systems can be used to model the evolution of populations in presence of geographical separations.

Keywords

Membrane computing P systems Spatial modeling Universality 

References

  1. Barbuti R, Maggiolo-Schettini A, Milazzo P, Tini S (2008) Compositional semantics and behavioral equivalences for P Systems. Theor Comput Sci 395(1):77–100MathSciNetMATHCrossRefGoogle Scholar
  2. Barbuti R, Maggiolo-Schettini A, Milazzo P, Pardini G (2009a) Spatial calculus of looping sequences. ENTCS 229(1):21–39, In: FBTC 2008Google Scholar
  3. Barbuti R, Maggiolo-Schettini A, Milazzo P, Tini S (2009b) P systems with transport and diffusion membrane channels. Fundamenta Informaticae 93(1–3):17–31MathSciNetMATHGoogle Scholar
  4. Bartocci E, Di Berardini MR, Corradini F, Emanuela M, Tesei L (2009) A shape calculus for biological processes. In: Preproceedings of ICTCS 2009, Politecnico di Milano, pp 30–33Google Scholar
  5. Besozzi D, Cazzaniga P, Pescini D, Mauri G (2008) Modelling Metapopulations with stochastic membrane systems. Biosystems 91(3):499–514CrossRefGoogle Scholar
  6. Bottoni P, Martín-Vide C, Pǎun G, Rozenberg G (2002) Membrane systems with promoters/inhibitors. Acta Informatica 38(10):695–720MathSciNetMATHCrossRefGoogle Scholar
  7. Cardelli L, Gardner P (2009) Processes in space. Imperial College Technical Report DTR09-4Google Scholar
  8. Cardona M, Colomer MA, Pérez-Jiménez MJ, Sanuy D, Margalida A (2009) Modeling ecosystems using P systems: the bearded vulture, a case study. In: Corne DW, Frisco P, Pǎun G, Rozenberg G, Salomaa A (eds) Membrane computing: 9th international workshop, Lecture notes in computer science, vol 5391, pp 137–156Google Scholar
  9. Irwin DE, Irwin JH, Price TD (2001) Ring species as bridges between microevolution and speciation. Genetica 112–113(1):223–243CrossRefGoogle Scholar
  10. John M, Ewald R, Uhrmacher AM (2008) A spatial extension to the π-calculus. ENTCS 194(3):133–148, In: FBTC 2007Google Scholar
  11. Manca V, Bianco L, Fontana F (2004) Evolution and oscillation in P systems: applications to biological phenomena. In: Mauri G, Pǎun G, Pérez-Jiménez MJ, Rozenberg G, Salomaa A (eds) Workshop on membrane computing, Springer, Lecture notes in computer science, vol 3365, pp 63–84Google Scholar
  12. Neumann JV (1966) Theory of self-reproducing automata. University of Illinois Press, Champaign, ILGoogle Scholar
  13. P Systems web page (2009) http://ppage.psystems.eu
  14. Pǎun G (2000) Computing with membranes. J Comput Syst Sci 61(1):108–143CrossRefGoogle Scholar
  15. Pǎun G (2002) Membrane computing. An introduction. Springer, BerlinGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Roberto Barbuti
    • 1
  • Andrea Maggiolo-Schettini
    • 1
  • Paolo Milazzo
    • 1
  • Giovanni Pardini
    • 1
  • Luca Tesei
    • 2
  1. 1.Dipartimento di InformaticaUniversità di PisaPisaItaly
  2. 2.School of Science and TechnologyUniversità di CamerinoCamerinoItaly

Personalised recommendations