Advertisement

Natural Computing

, Volume 10, Issue 1, pp 119–127 | Cite as

Biocircuit design through engineering bacterial logic gates

  • Angel Goñi-Moreno
  • Miguel Redondo-Nieto
  • Fernando Arroyo
  • Juan Castellanos
Article

Abstract

Designing synthetic biocircuits to perform desired purposes is a scientific field that has exponentially grown over the past decade. The advances in genome sequencing, bacteria gene regulatory networks, as well as the further knowledge of intraspecies bacterial communication through quorum sensing signals are the starting point for this work. Although biocircuits are mostly developed in a single cell, here we propose a model in which every bacterium is considered to be a single logic gate and chemical cell-to-cell connections are engineered to control circuit function. Having one genetically modified bacterial strain per logic process would allow us to develop circuits with different behaviors by mixing the populations instead of re-programming the whole genetic network within a single strain. Two principal advantages of this procedure are highlighted. First, the fully connected circuits obtained where every cellgate is able to communicate with all the rest. Second, the resistance to the noise produced by inappropriate gene expression. This last goal is achieved by modeling thresholds for input signals. Thus, if the concentration of input does not exceed the threshold, it is ignored by the logic function of the gate.

Keywords

Synthetic biology Logic gate Biocircuit Cell–cell communication 

Notes

Acknowledgement

M. Redondo-Nieto is the recipient of a contract from MICROAMBIENTE-CM Consortium Program from Comunidad Autónoma de Madrid (Spain).

References

  1. Alon U (2003) The Tinkerer as an engineer science. Biolog Netw 301(5641):1866–1867Google Scholar
  2. Barron JA, Rosen R, Jones-Meehan J, Spargo BJ, Belkin S, Ringeisen BR (2004) Biological laser printing of genetically modified Escherichia coli for biosensor applications. Biosens Bioelectron 20(2):246–252CrossRefGoogle Scholar
  3. Batt G, Yordanov B, Weiss R, Belta C (2007) Robustness analysis and tuning of synthetic gene networks. Syst. Biol 23(18):2415–2422Google Scholar
  4. Bjerketorp J, Hkansson S, Belkin S, Jansson JK (2006) Advances in preservation methods: keeping biosensor microorganisms alive and active. Curr Opin Biotechnol 17(1):43-49CrossRefGoogle Scholar
  5. Brenner K, Karig DK, Weiss R, Arnold FH (2007) Engineered bidirectional communication mediates a consensus in a microbial biofilm consortium. Proc Natl Acad Sci USA 104(44):17300–17304CrossRefGoogle Scholar
  6. Chen BS, Chang CH, Lee HC (2009) Robust synthetic biology design: stochastic game theory approach. Bioinformatics 25(14):1822–1830CrossRefGoogle Scholar
  7. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745CrossRefGoogle Scholar
  8. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science. 284:1318–1322CrossRefGoogle Scholar
  9. Danchin A (2009) Bacteria as computers making computers. FEMS Microbiol Rev 33(1):3–26MathSciNetCrossRefGoogle Scholar
  10. Eberhard A, Burlingame AL, Eberhard C, Kenyon GL, Nealson KH, Oppenheimer NJ (1981) Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20(9):2444–2449CrossRefGoogle Scholar
  11. Engebrecht J, Silverman M (1984) Identification of genes and gene products necessary for bacterial bioluminescence. Proc Natl Acad Sci USA 81:4154–4158CrossRefGoogle Scholar
  12. Engebrecht J, Nealson K, Silverman M (1983) Bacterial bioluminescence: isolation and genetic analysis of functions from Vibrio fischeri. Cell 32:773–781CrossRefGoogle Scholar
  13. Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275Google Scholar
  14. Hinze T, Lenser T, Matsumaru N, Dittrich P, Hayat S (2008) Biosignal-based computing by AHL induced synthetic gene regulatory networks. From an in vivo flip-flop implementation to programmable computing agents. HFSP J 2(5):239–243CrossRefGoogle Scholar
  15. Hooshangi S, Weiss R (2006) The effect of negative feedback on noise propagation in transcriptional gene networks. Chaos 16(2):26108CrossRefGoogle Scholar
  16. Huerta AM, Salgado H, Thieffry D, Collado-Vides J (1998) RegulonDB: a database on transcriptional regulation in Escherichia coli. Nucleic Acids Res 26(1):55–59CrossRefGoogle Scholar
  17. Janky R, van Heiden J, Madan Babu M (2009) From analysis of complex networks to discovery of cis-regulatory elements Methods. Investig Transcr Regul 48(3):277–286Google Scholar
  18. Jayaraman A, Wood TK (2008) Bacterial quorum sensing: signals, circuits, and implications for biofilms and disease. Annu Rev Biomed Eng 10:145–167CrossRefGoogle Scholar
  19. Knight TF, Sussman GJ (1997) Cellular gate technology. MIT Artificial Intelligence Laboratory, CambridgeGoogle Scholar
  20. Mathee K, McPherson CJ, Ohman DE (1997) Posttranslational control of the algT (algU)-encoded sigma22 for expression of the alginate regulon in Pseudomonas aeruginosa and localization of its antagonist proteins MucA and MucB (AlgN). J Bacteriol 179(11):3711–3720Google Scholar
  21. Moya A, Gil R, Latorre A, Juli Peret J, Garcillán-Barcia MP, de la Cruz F (2009) Toward minimal bacterial cells: evolution vs design. FEMS Microbiol. Rev 33:225–235CrossRefGoogle Scholar
  22. Münch R, Hiller K, Barg H, Heldt D, Linz S, Wingender E, Jahn D (2003) PRODORIC: prokaryotic database of gene regulation. Nucleic Acids Res 31(1):266–269CrossRefGoogle Scholar
  23. Nyan M, Smolke ChD (2008) Higher-Order cellular information processing with synthetic RNA devices. Science 322(5900):456–460CrossRefGoogle Scholar
  24. Romero-Campero FJ, Perez-Jimenez MJ (2008) A model of the quorum sensing system in Vibrio fischeri. Artif Life 14(1):95–109CrossRefGoogle Scholar
  25. Seshasayee ASN, Bertone P, Fraser GM, Luscombe NM (2006) Transcriptional regulatory networks in bacteria: from input signals to output responses Curr. Opin Microbiol 9(5):511–519CrossRefGoogle Scholar
  26. Storz G, Waters L (2009) Regulatory RNAs in bacteria. Cell 136(4):615–628CrossRefGoogle Scholar
  27. Weiss R, Homsy G, Nagpal R (1998) Programming biological cells. In: Proceedings of the 8th international conference on architectural support for programming languages and operating systems (ASPLOS-VIII), San Jose, California, 3–7 October 1998Google Scholar
  28. Wilson D, Charoensawan V, Kummerfeld SK, Teichmann SA (2008) DBD–taxonomically broad transcription factor predictions: new content and functionality. Nucleic Acids Res 36(Database issue):D88–D92Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Angel Goñi-Moreno
    • 1
    • 5
  • Miguel Redondo-Nieto
    • 2
  • Fernando Arroyo
    • 3
    • 5
  • Juan Castellanos
    • 4
    • 5
  1. 1.Grupo de Computación Natural, Facultad de InformáticaUniversidad Politécnica de MadridMadridSpain
  2. 2.Depto. Biología, Facultad de CienciasUniversidad Autónoma de MadridMadridSpain
  3. 3.Depto. de Lenguajes, Proyectos y Sistemas Informáticos, Escuela Universitaria de InformáticaUniversidad Politécnica de MadridMadridSpain
  4. 4.Artificial Intelligence Department, Facultad de InformáticaUniversidad Politécnica de MadridMadridSpain
  5. 5.Natural Computing GroupUniversidad Politécnica de MadridMadridSpain

Personalised recommendations