Natural Computing

, Volume 9, Issue 4, pp 955–989

Petri nets for modelling metabolic pathways: a survey

  • Paolo Baldan
  • Nicoletta Cocco
  • Andrea Marin
  • Marta Simeoni
Article

Abstract

In the last 15 years, several research efforts have been directed towards the representation and the analysis of metabolic pathways by using Petri nets. The goal of this paper is twofold. First, we discuss how the knowledge about metabolic pathways can be represented with Petri nets. We point out the main problems that arise in the construction of a Petri net model of a metabolic pathway and we outline some solutions proposed in the literature. Second, we present a comprehensive review of recent research on this topic, in order to assess the maturity of the field and the availability of a methodology for modelling a metabolic pathway by a corresponding Petri net.

Keywords

Petri nets Metabolic pathways Qualitative and quantitative analysis Tools 

References

  1. Agerwala T (1974) A complete model for representing the coordination of asynchronous processes. Hopkins computer research report 32. John Hopkins UniversityGoogle Scholar
  2. Ajmone Marsan M, Balbo G, Conte G, Donatelli S, Franceschinis G (1995) Modelling with generalized stochastic Petri nets. Wiley series in parallel computing. Wiley, New YorkGoogle Scholar
  3. Atkin P, de Paula J (2006) Atkins’ physical chemistry. Oxford University Press, OxfordGoogle Scholar
  4. Balbo G (2007) Introduction to generalized stochastic Petri nets. In: Bernardo M and Hillston J (eds) Formal methods for performance evaluation, vol 4486 of LNCS. Springer, Berlin, pp 83–131Google Scholar
  5. Beasley JE, Planes FJ (2007) Recovering metabolic pathways via optimization. Bioinformatics 23(1):92–98CrossRefGoogle Scholar
  6. BioCarta: charting pathways of life. http://www.biocarta.com
  7. BioCyc: database collection. http://www.BioCyc.org
  8. Biomodels database. http://www.ebi.ac.uk/biomodels
  9. Biomolecular interaction networks database. http://www.bond.unleashedinformatics.com
  10. Borger S, Liebermeister W, Klipp E (2006) Prediction of enzyme kinetic parameters based on statistical learning. Genome Inf Ser 1(17):80–87Google Scholar
  11. Borger S, Uhlendorf J, Helbig A, Liebermeister W (2007) Integration of enzyme kinetic data from various sources. In Silico Biol 7(S1 09)Google Scholar
  12. Breitling R, Gilbert D, Heiner M, Orton R (2008) A structured approach for the engineering of biochemical network models, illustrated for signalling pathways. Brief Bioinform 9(5):404–421CrossRefGoogle Scholar
  13. BRENDA: the comprehensive enzyme information system. http://www.brenda-enzymes.info
  14. Busi N (2002) Analysis issues in Petri nets with inhibitor arcs. Theor Comput Sci 275(1–2):127–177MATHCrossRefMathSciNetGoogle Scholar
  15. Caspi R, Foerster H, Fulcher CA, Kaipa P, Krummenacker M, Latendresse M, Paley S, Rhee SY, Shearer AG, Tissier C, Walk TC, Zhang P, Karp PD (2008) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 36(Database Issue):D623–D631Google Scholar
  16. Chang A, Scheer M, Grote A, Schomburg I, Schomburg D (2009) BRENDA, AMENDA and FRENDA the enzyme information system: new content and tools in 2009. Nucleic Acids Res 37(Database Issue):D588–D592Google Scholar
  17. Chaouiya C (2007) Petri net modelling of biological networks. Brief Bioinform 8(4):210–219CrossRefGoogle Scholar
  18. Chaouiya C, Remy E, Thieffry D (2008) Petri net modelling of biological regulatory networks. J Discrete Algorithms 6(2):165–177MATHCrossRefMathSciNetGoogle Scholar
  19. Chatraryamontri A, Ceol A, Montecchi Palazzi L, Nardelli G, Schneider MV, Castagnoli L, Cesareni G (2007) MINT: the Molecular INTeraction database. Nucleic Acids Res 35(Database Issue):D572–D574Google Scholar
  20. Chen M (2002) Modelling and simulation of metabolic networks: Petri nets approach and perspective. In: Proceedings of the European simulation multiconference on modelling and simulation, pp 441–444Google Scholar
  21. Chen M, Hofestädt R (2003) Quantitative Petri net model of gene regulated metabolic networks in the cell. In Silico Biol 3(0029):347–365Google Scholar
  22. Chen M, Freier A, Koehler J, Ruegg A (2002) The biology Petri net markup language. In: Promise2002. Lecture notes in informatics, pp 150–161Google Scholar
  23. Crampin EJ, Schnell S, McSharry PE (2004) Matematical and computational techniques to deduce complex biochemical reaction mechanisms. Prog Biophys Mol Biol 86:77–112CrossRefGoogle Scholar
  24. Database of Interacting Proteins. http://www.dip.doe-mbi.ucla.edu
  25. David R, Alla H (2005) Discrete, continuous, and hybrid Petri nets. Springer, HeidelbergMATHGoogle Scholar
  26. de Jong H (2002) Modelling and simulation of genetic regulatory systems: a literature review. J Comput Biol 9(1):67–103CrossRefGoogle Scholar
  27. Desel J, Esparza J (2005) Free choice Petri nets. Cambridge University Press, CambridgeGoogle Scholar
  28. Design/CPN: computer tool for coloured petri nets. http://www.daimi.au.dk/designCPN
  29. Deville Y, Gilbert D, van Helden J, Wodak SJ (2003) An overview of data models for the analysis of biochemical pathways. Brief Bioinform 4(3):246–259CrossRefGoogle Scholar
  30. Doi A, Fujita S, Matsuno H, Nagasaki M, Miyano S (2004) Constructing biological pathway models with hybrid functional Petri net. In Silico Biol 4(0023):271–291Google Scholar
  31. Doi A, Nagasaki M, Matsuno H (2006) Simulation-based validation of the p53 transcriptional activity with hybrid functional Petri net. In Silico Biol 6(0001):1–13Google Scholar
  32. Edwards JS, Covert M, Palsson BO (2002) Metabolic modelling of microbes: the flux-balance approach. Environ Microbiol 4(3):133–140CrossRefGoogle Scholar
  33. ENZYME: enzyme nomenclature database. http://www.expasy.ch/enzyme
  34. Esparza J, Heljanko K (2008) Unfoldings—a partial order approach to model checking. EACTS monographs in theoretical computer science. Springer, BerlinGoogle Scholar
  35. Esparza J, Nielsen M (1994) Decidability issues for Petri nets—a survey. J Inf Process Cybern EIK 30(3):143–160MATHGoogle Scholar
  36. Extensible Markup Language. http://www.w3.org/XML
  37. Fell DA (1992) Metabolic control analysis: a survey of its theoretical and experimental development. Biochem J 286:313–330Google Scholar
  38. Ganty P, Raskin J-F, Van Begin L (2007) From many places to few: automatic abstraction refinement for Petri nets. In: Kleijn J, Yakovlev A (eds) Proceedings of ICATPN’07, vol 4546 of LNCS. Springer, Berlin, pp 124–143Google Scholar
  39. Genrich H, Küeffner R, Voss K (2000) Executable Petri net models for the analysis of metabolic pathways. In: Proceedings of the workshop on practical use of high-level Petri nets, pp 1–14Google Scholar
  40. Gibson MA, Bruck J (2000) Efficient exact stochastic simulation of chemical systems with many species and many channels. J Phys Chem 25(104):1876–1889Google Scholar
  41. Gilbert D, Heiner M (2006) From Petri nets to differential equations—an integrative approach for biochemical networks analysis. In: Petri nets and other models of concurrency—ICATPN 2006, vol 4024 of LNCS. Springer, Berlin, pp 181–200Google Scholar
  42. Gilbert D, Heiner M, Lehrack S (2007) A unifying frameworks for modelling and analysing biochemical pathways using Petri nets. In: Proceedings of the workshop on computational methods in systems biology (CMSB), pp 200–216Google Scholar
  43. Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 25(81):2340–2361CrossRefGoogle Scholar
  44. Goss PJ, Peccoud J (1998) Quantitative modeling of stochastic systems in molecular biology by using stochastic Petri nets. Proc Natl Acad Sci USA 95(12):6750–6755CrossRefGoogle Scholar
  45. Grafahrend-Belau E, Schreiber F, Heiner M, Sackmann A, Junker BH, Grunwald S, Speer A, Winder K, Koch I (2008) Modularization of biochemical networks based on classification of Petri net T-invariants. BMC Bioinform 9:90Google Scholar
  46. Grunwald S, Speer A, Ackermann J, Koch I (2008) Petri net modelling of gene regulation of the Duchenne muscular dystrophy. BioSystems 92:189–205CrossRefGoogle Scholar
  47. Hardy S, Robillard PN (2004) Modeling and simulation of molecular biology systems using Petri nets: modeling goals of various approaches. J Bioinform Comput Biol 2(4):619–637CrossRefGoogle Scholar
  48. Hardy S, Robillard PN (2008) Petri net-based method for the analysis of the dynamics of signal propagation in signaling pathways. Bioinformatics 24(2):209–217CrossRefGoogle Scholar
  49. Heiner M, Koch I (2004) Petri net based model validation in systems biology. In: Petri nets and other models of concurrency—ICATPN 2004, vol 3099 of LNCS. Springer, Berlin, pp 216–237Google Scholar
  50. Heiner M, Koch I, Schuster S (2000) Using time-dependent Petri nets for the analysis of metabolic networks. In: Hofestadt R, Lautenbach K, Lange M (eds) Workshop Modellierung und Simulation Metabolischer Netzwerke, preprint no. 10. Otto-von-Guericke University of Magdeburg, pp 15–21Google Scholar
  51. Heiner M, Koch I, Voss K (2001) Analysis and simulation of steady states in metabolic pathways with Petri nets. In: Workshop and tutorial on practical use of coloured Petri nets and the CPN tools (CPN’01), pp 15–34Google Scholar
  52. Heiner M, Koch I, Will J (2004) Model validation of biological pathways using Petri nets—demostrated for apoptosis. Biosystems 75:15–28CrossRefGoogle Scholar
  53. Heiner M, Gilbert D, Donaldson R (2008) Petri nets for systems and synthetic biology. In: Proceedings of SFM’08, vol 5016 of LNCS. Springer, Berlin, pp 215–264Google Scholar
  54. Heinrich R, Rapoport TA (1974) A linear steady-state treatment of enzymatic chains. Eur J Biochem 42:89–95CrossRefGoogle Scholar
  55. Hofer T, Heinrich R (1993) A second order approach to metabolic control analysis. J Theor Biol 164:85–102CrossRefGoogle Scholar
  56. Hofestädt R (1994) A Petri net application of metbolic processes. J Syst Anal Model Simul 16:113–122MATHGoogle Scholar
  57. Hofestädt R, Thelen S (1998) Quantitative modeling of biochemical networks. In Silico Biol 1(0006)Google Scholar
  58. Jensen K (1997) Coloured Petri nets. Basic concepts, analysis methods and practical use. Monographs in Theoretical Computer Science. Springer, BerlinGoogle Scholar
  59. Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 34:D480–D484Google Scholar
  60. Kant K (1992) Introduction to computer system performance evaluation. McGraw-Hill Inc., New YorkGoogle Scholar
  61. Kegg Markup Language manual. http://www.genome.ad.jp/kegg/docs/xml
  62. KEGG pathway database—Kyoto University Bioinformatics Centre. http://www.genome.jp/kegg/pathway.html
  63. Kielbassa J, Bortfeldt R, Schuster S, Koch I (2008) Modeling of the U1 snRNP assembly pathway in alternative splicing in human cell using Petri nets. Comput Biol Chem 33:46–61Google Scholar
  64. Kitano H (2002a) Computational systems biology. Nature 420:206–210CrossRefGoogle Scholar
  65. Kitano H (2002b) Systems biology: a brief overview. Science 295:1662–1664CrossRefGoogle Scholar
  66. Koch I, Heiner M (2008) Petri nets. In: Junker BH, Schreiber F (eds) Analysis of biological networks, book series in bioinformatics. Wiley, New York, pp 139–179Google Scholar
  67. Koch I, Junker BH, Heiner M (2005) Application of Petri net theory for modelling and validation of the sucrose breakdown pathway in the potato tuber. Syst Biol 21(7):1219–1226Google Scholar
  68. Koza JR (2003) Handbook of metaheuristics—chap 7: automatic synthesis of topologies and numerical parameters, vol 57 of International Series in Operations Research and Management Science. Springer, New YorkGoogle Scholar
  69. Liebermeister W, Uhlendorf J, Borger S, Klipp E (2007) Automatic integration of kinetic data for metabolic network modelling. In: ICSB 2007, ACM, pp 80–87Google Scholar
  70. Lipton RJ (1976) The reachability problem requires exponential space, research report 62. Yale University, New HavenGoogle Scholar
  71. Mandel J, Palfreyman NM, Lopez JA, Dubitzky W (2004) Representing bioinformatics causality. Brief Bioinform 5(3):270–283CrossRefGoogle Scholar
  72. Marwan W, Sujatha A, Starostzik C (2005) Reconstructing the regulatory network controlling commitment and sporulation in Physarum polycephalum based on hierarchical Petri net modelling and simulation. J Theor Biol 236:349–365CrossRefGoogle Scholar
  73. Matsuno H, Fujita S, Doi A, Nagasaki M, Miyano S (2003a) Towards biopathway modeling and simulation. In: ICATPN 2003, vol 2679 of LNCS. Springer, Berlin, pp 3–22Google Scholar
  74. Matsuno H, Tanaka Y, Aoshima H, Doi A, Matsui M, Miyano S (2003b) Biopathway representation and simulation on hybrid functional Petri net. In Silico Biol 3(0032):389–404Google Scholar
  75. Matsuno H, Li C, Miyano S (2006) Petri net based descriptions for systematic understanding of biological pathways. EICE Trans Fundam Electron Commun Comput Sci E89-A(11):3166–3174CrossRefGoogle Scholar
  76. Mayr EW (1981) Persistence of vector replacement systems is decidable. Acta Inform 15:309–318MATHCrossRefMathSciNetGoogle Scholar
  77. Merlin PM, Farber DJ (1976) Recoverability of communication protocols—implications of a theoretical study. IEEE Trans Commun 24(9):1036–1043MATHCrossRefMathSciNetGoogle Scholar
  78. MetaCyc encyclopedia of metabolic pathways. http://www.metacyc.org
  79. MINT: the Molecular INTeraction database. http://www.mint.bio.uniroma2.it
  80. Miyano S, Matsuno H (2004) How to model and simulate biological pathways with Petri Nets—a new challenge for system biology. In: International conference on applications and theory of Petri nets, Bologna, ItalyGoogle Scholar
  81. Moles CG, Mendes P, Banga R (2003) Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res 13:2467–2474CrossRefGoogle Scholar
  82. Molloy MK (1981) On the integration of delay and throughput measures in distributed processing models. PhD thesis, UCLA, Los AngelesGoogle Scholar
  83. Murata T (1989) Petri nets: properties, analysis, and applications. Proc IEEE 77(4):541–580CrossRefGoogle Scholar
  84. Nagasaki M, Doi A, Matsuno H, Miyano S (2005) Petri net based description and modeling of biological pathways. In: Proceedings of the algebraic biology 2005. Universal Academy Press, pp 19–31Google Scholar
  85. Oliveira JS, Bailey CG, Jones-Oliveira JB, Dixon DA, Gull DW, Chandler ML (2003) A computational model for the identification of biochemical pathways in the Krebs cycle. J Comput Biol 10(1):57–82CrossRefGoogle Scholar
  86. Pastor E, Cortadella J, Peña M (1999) Structural methods to improve the symbolic analysis of Petri nets. In: Donatelli S, Kleijn HCM (eds) Proceedings of ICATPN’99, vol 1639 of LNCS. Springer, Berlin, pp 26–45Google Scholar
  87. Peleg M, Yeh I, Altman RB (2002) Modelling biological processes using workflow and Petri net models. Bioinformatics 18(6):825–837CrossRefGoogle Scholar
  88. Peleg M, Rabin D, Altman RB (2005) Using Petri net tools to study properties and dynamics of biological systems. J Am Med Inform Assoc 12:181–199CrossRefGoogle Scholar
  89. Peterson JL (1981) Petri net theory and the modelling of systems. Prentice-Hall, Englewood CliffsMATHGoogle Scholar
  90. Petri Net Markup Language. http://www.pnml.org
  91. Popova-Zeugmann L, Heiner M and Koch I (2005) Timed Petri nets for modelling and analysis of biochemical networks. Fundam Inform 67:149–162MATHMathSciNetGoogle Scholar
  92. REACTOME a curated knowledgebase of biological pathways. http://www.reactome.org
  93. Reddy VN (1994) Modeling biological pathways: a discrete event systems approach. Master’s thesis, The Universisty of Maryland, M.S. 94-4Google Scholar
  94. Reddy VN, Mavrovouniotis ML, Liebman MN (1993) Petri net representations in metabolic pathways. In: ISMB93: first international conference on intelligent systems for molecular biology. AAAI Press, pp 328–336Google Scholar
  95. Reddy VN, Liebman MN, Mavrovouniotis ML (1996) Qualitative analysis of biochemical reaction systems. Comput Biol Med 26(1):9–24CrossRefGoogle Scholar
  96. Reisig W (1985) Petri nets: an introduction. EACTS monographs on theoretical computer science. Springer-Verlag, BerlinGoogle Scholar
  97. Sackmann A, Heiner M, Koch I (2006) Application of Petri net based analysis techniques to signal transduction pathways. BMC Bioinform 7:482Google Scholar
  98. Sackmann A, Formanowicz D, Formanowicz P, Koch I, Blazewicz J (2007) An analysis of the Petri net based model of the human body iron homeostasis process. Comput Biol Chem 31:1–10MATHCrossRefGoogle Scholar
  99. Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D (2004) The database of interacting proteins: 2004 update. Nucleic Acids Res 32(Database Issue):D449–D451Google Scholar
  100. SBML: Systems Biology Markup Language. http://www.sbml.org
  101. Schilling CH, Schuster S, Palsson BO, Heinrich R (1999) Metabolic pathway analysis: basic concepts and scientific applications in the post-genomic era. Biotechnol Prog 15:296–303CrossRefGoogle Scholar
  102. Schilling CH, Letscherer D, Palsson BO (2000) Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. J Theor Biol 203:229–248CrossRefGoogle Scholar
  103. Schroter C, Schwoon S, Esparza J (2003) The model checking kit. In: Proceedings of the 24th international conference on application and theory of Petri nets (ICATPN 03), vol 2697 of LNCS. Springer, Berlin, pp 463–472Google Scholar
  104. Schuster S, Hilgetag C (1994) On elementary flux modes in biochemical reaction systems at steady state. J Biol Syst 2:165–182CrossRefGoogle Scholar
  105. Schuster S, Dandekar T, Fell DA (1999) Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends Biotechnol 17:53–60CrossRefGoogle Scholar
  106. Schuster S, Fell DA, Dandekar T (2000) A general definition of metabolic pathway useful for systematic organization and analysis of complex metabolic networks. Nat Biotechnol 18:326–332CrossRefGoogle Scholar
  107. Schuster S, Pfeiffer T, Moldenhauer F, Koch I, Dandekar T (2002) Exploring the pathway structure of metabolism: decomposition into subnetworks and application to Mycoplasma pneumoniae. Bioinformatics 18(2):351–361CrossRefGoogle Scholar
  108. Shaw O, Koelmans A, Steggles J, Wipat A (2004) Applying Petri nets to systems biology using XML technologies. In: Kindler E (ed) Proceedings of the workshop on the definition, implementation and application of a standard interchange format for Petri nets. Satellite event of ATPN, pp 11–25Google Scholar
  109. Shaw O, Steggles J, Wipat A (2006) Automatic parameterisation of stochastic Petri net models of biological networks. Electron Notes Theor Comput Sci 151(3):111–129. Proceedings of the second international workshop on the practical application of stochastic modeling (PASM 2005).Google Scholar
  110. Simão E, Remy E, Thieffry D, Chaouiya C (2005) Qualitative modelling of regulated metabolic pathways: application to the tryptophan biosynthesis in E. coli. Syst Biol 21(2):ii190–ii196Google Scholar
  111. SNOOPY: a software tool to design and animate hierarchical graphs. http://www.dssz.informatik.tu-cottbus.de/index.html?/software/snoopy.html
  112. Starke PH, Roch S (1999) The integrated net analyzer. Humbolt University, Berlin. http://www.informatik.hu-berlin.de/starke/ina.html
  113. Tovchigrechko A (2006) Model checking using interval decision diagrams. PhD thesis, Department of Computer Science, BTU CottbusGoogle Scholar
  114. TRANSPATH: the pathway database. http://www.biobase-international.com
  115. Valk R (1978) Self-modifying nets, a natural extension of Petri nets. In: Ausiello G, Böhm C (eds) Proceedings of ICALP’78, vol 62 of LNCS. Springer, Berlin, pp 464–476Google Scholar
  116. Valk R, Vidal-Naquet G (1981) Petri nets and regular languages. J Comput Syst Sci 23(3):299–325MATHCrossRefMathSciNetGoogle Scholar
  117. Varma A, Palsson BO (1994) Metabolic flux balancing: basic concepts, scientific and practical use. Bio/Technology 12:994–998CrossRefGoogle Scholar
  118. Voet DJ, Voet JG (2004) Biochemistry. Wiley, New YorkGoogle Scholar
  119. Voss K, Heiner M, Koch I (2003) Steady state analysis of metabolic pathways using Petri nets. In Silico Biol 3(0031):367–387Google Scholar
  120. Wiekert W (2002) Modelling and simulation: tools for metabolic engineering. J Biotechnol 94(1):37–63CrossRefGoogle Scholar
  121. Wilkinson DJ (2006) Stochastic modelling for systems biology. Chapman and Hall/CRC, Boca RatonMATHGoogle Scholar
  122. Zevedei-Oancea I, Schuster S (2003) Topological analysis of metabolic networks based on Petri net theory. In Silico Biol 3(0029):323–345Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Paolo Baldan
    • 1
  • Nicoletta Cocco
    • 2
  • Andrea Marin
    • 2
  • Marta Simeoni
    • 2
  1. 1.Dipartimento di Matematica Pura e ApplicataUniversità di PadovaPadovaItaly
  2. 2.Dipartimento di InformaticaUniversità Ca’ Foscari di VeneziaVenezia MestreItaly

Personalised recommendations