Natural Computing

, Volume 9, Issue 2, pp 457–473 | Cite as

Deterministic and stochastic P systems for modelling cellular processes

  • Marian Gheorghe
  • Vincenzo Manca
  • Francisco J. Romero-Campero
Article

Abstract

This paper presents two approaches based on metabolic and stochastic P systems, together with their associated analysis methods, for modelling biological systems and illustrates their use through two case studies.

Keywords

Membrane computing P systems Modelling Systems biology Synthetic biology 

References

  1. Alberts B, Raff M (1997) Essential cell biology: an introduction to the molecular biology of the cell. Garland Science, New YorkGoogle Scholar
  2. Benner SA, Sismour M (2005) Synthetic biology. Nat Rev Genet 6:533–543CrossRefGoogle Scholar
  3. Bernardini F, Manca V (2003) Dynamical aspects of P systems. BioSystems 70(2):85–93CrossRefGoogle Scholar
  4. Bernardini F, Gheorghe M, Krasnogor N (2007a) Quorum sensing P systems. Theor Comput Sci 371(1–2):20–33MATHCrossRefMathSciNetGoogle Scholar
  5. Bernardini F, Gheorghe M, Romero-Campero FJ, Walkinshaw N (2007b) A hybrid approach to modeling biological systems. Lecture notes in computer science, vol 4860. Springer, Berlin, pp 138–159Google Scholar
  6. Castellini A, Manca V (2008) MetaPlab: a computational framework for metabolic P systems. Pre-proceedings WMC 2008, Edinburgh, UKGoogle Scholar
  7. Castellini A, Manca V, Marchetti L (2008) MP systems and hybrid Petri nets. Stud Comput Intell 129: 53–62CrossRefGoogle Scholar
  8. Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403(20):335–338CrossRefGoogle Scholar
  9. Ernst M, Cockrell J, Griswold W, Notkin D (2001) Dynamically discovering likely program invariants to support program evolution. IEEE Trans Softw Eng 27(2): 99–123CrossRefGoogle Scholar
  10. Fontana F, Manca V (2007) Discrete solutions to differential equations by metabolic P systems. Theor Comput Sci 372(2–3):165–182MATHCrossRefMathSciNetGoogle Scholar
  11. Gillespie DT (2007) Stochastic simulation of chemical kinetics. Annu Rev Phys Chem 58:35–55CrossRefGoogle Scholar
  12. Goldbeter A (1991) A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase. PNAS 88: 9107–9111CrossRefGoogle Scholar
  13. Krasnogor N, Gheorghe M, Terrazas G, Diggle S, Williams P, Camara M (2005) An appealing computational mechanism drawn from bacterial quorum sensing. Bull EATCS 85:135–148MATHMathSciNetGoogle Scholar
  14. Kwiatkowska M, Norman G, Parker D (2005) Probabilistic model checking in practice: case studies with PRISM. ACM SIGMETRICS Perform Eval Rev 32(4):16–21CrossRefGoogle Scholar
  15. Manca V (2007) Metabolic P systems for biochemical dynamics. Prog Nat Sci 17(4):384–391MATHCrossRefMathSciNetGoogle Scholar
  16. Manca V (2008a) Discrete simulations of biochemical dynamics. Lecture notes in computer science, vol 4848, Springer, Berlin, pp 231–235Google Scholar
  17. Manca V (2008b) The metabolic algorithm for P systems: principles and applications. Theor Comput Sci 404(1–2):142–157MATHCrossRefMathSciNetGoogle Scholar
  18. Manca V (2008c) Log-gain principles for metabolic P systems. Rozenberg’s Festschrift, Natural Computing Series, Springer, BerlinGoogle Scholar
  19. Manca V (2009) Fundamentals of metabolic P systems. In: Paun G, Rozenberg G, Salomaa A (eds) Handbook of membrane computing, Chap. 16. Oxford University Press, OxfordGoogle Scholar
  20. Manca V, Bianco L (2008) Biological networks in metabolic P systems. BioSystems 91(3):489–498CrossRefGoogle Scholar
  21. Manca V, Bianco L, Fontana F (2005) Evolutions and oscillations of P systems: applications to biological phenomena. Lecture notes in computer science, vol 3365. Springer, Berlin, pp 63–84Google Scholar
  22. Manca V, Pagliarini R, Zorzan S (2008) A photosynthetic process modelled by a metabolic P system. Nat Comput (in press). doi: 10.1007/s11047-008-9104-x
  23. Păun Gh (2000) Computing with membranes. J Comput Syst Sci 61:108–143MATHCrossRefGoogle Scholar
  24. Păun Gh (2002) Membrane computing: an introduction. Springer, BerlinMATHGoogle Scholar
  25. Pérez-Jiménez MJ, Romero-Campero FJ (2006) P Systems, a new computational modelling tool for systems biology. Transactions on Computational Systems Biology VI, LNBI, vol 4220, pp 176–197Google Scholar
  26. Pescini D, Besozzi D, Mauri G, Zandron C (2006) Dynamical probabilistic P systems. Intern J Found Comput Sci 17:183–204MATHCrossRefMathSciNetGoogle Scholar
  27. Romero-Campero FJ, Pérez-Jiménez MJ (2008) A model of the quorum sensing system in Vibrio fischeri using P systems. Artif Life 14(1):1–15CrossRefGoogle Scholar
  28. Romero-Campero FJ, Gheorghe M, Ciobanu G, Bianco L, Pescini D, Pérez-Jiménez MJ, Ceterchi R (2006) Towards probabilistic model checking on P systems using PRISM. Lecture notes in computer science, vol 4361. Springer, Berlin, pp 477–495Google Scholar
  29. Romero-Campero FJ, Gheorghe M, Ciobanu G, Auld JM, Pérez-Jiménez MJ (2007) Cellular modelling using P systems and process algebra. Prog Nat Sci 17(4):375–383MATHCrossRefGoogle Scholar
  30. Romero-Campero FJ, Cao H, Cámara M, Krasnogor N (2008) Structure and parameter estimation for cell systems biology models. In: Proceedings of the Genetic and Evolutionary Computation Conference, July 12–16, Atlanta, USA, pp 331–338Google Scholar
  31. Romero-Campero FJ, Twycross J, Cámara M, Bennett M, Gheorghe M, Krasnogor N (2009) Modular assembly of cell systems biology models using P systems. Int J Found Comput Sci 20:427–442Google Scholar
  32. The P Systems Web Site (2008) http://www.ppage.psystems.eu
  33. von Bertalanffy L (1967) General systems theory: foundations, developments, applications. George Braziller Inc., New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Marian Gheorghe
    • 1
  • Vincenzo Manca
    • 2
  • Francisco J. Romero-Campero
    • 3
  1. 1.Department of Computer ScienceThe University of SheffieldSheffieldUK
  2. 2.Department of Computer ScienceThe University of VeronaVeronaItaly
  3. 3.School of Computer ScienceThe University of NottinghamNottinghamUK

Personalised recommendations