Natural Computing

, Volume 10, Issue 3, pp 1077–1097 | Cite as

Petri net models for the semi-automatic construction of large scale biological networks

  • Ming Chen
  • Sridhar Hariharaputran
  • Ralf Hofestädt
  • Benjamin Kormeier
  • Sarah Spangardt


For the implementation of the virtual cell, the fundamental question is how to model and simulate complex biological networks. During the last 15 years, Petri nets have attracted more and more attention to help to solve this key problem. Regarding the published papers, it seems clear that hybrid functional Petri nets are the adequate method to model complex biological networks. Today, a Petri net model of biological networks is built manually by drawing places, transitions and arcs with mouse events. Therefore, based on relevant molecular database and information systems biological data integration is an essential step in constructing biological networks. In this paper, we will motivate the application of Petri nets for modeling and simulation of biological networks. Furthermore, we will present a type of access to relevant metabolic databases such as KEGG, BRENDA, etc. Based on this integration process, the system supports semi-automatic generation of the correlated hybrid Petri net model. A case study of the cardio-disease related gene-regulated biological network is also presented. MoVisPP is available at


Functional Petri net Model construction Data integration Cardio-disease network MoVisPP 



The work is supported in part by the EU project “CardioWorkBench” ( and the BMBF Project (CHN 08/001). Ming Chen would like to thank DAAD fellowship and NSFC, MOST of China for related project financial support. Sridhar Hariharaputran would like to thank the DFG Graduate College Bioinformatics and Bioinformatics Department, Faculty of Technology at Bielefeld University for their financial support.


  1. Alla H, David R (1998) Continuous and hybrid Petri nets. J Circuits Syst Comput 8(1):159–188MathSciNetCrossRefGoogle Scholar
  2. Bairoch A (2000) The ENZYME database in 2000. Nucleic Acids Res 28:304–305CrossRefGoogle Scholar
  3. Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242CrossRefGoogle Scholar
  4. Chaouiya C, Remy E, Ruet P et al (2004) Qualitative modeling of genetic networks: from logical regulatory graphs to standard Petri nets. Lect Notes Comput Sci 3099:137–156MathSciNetCrossRefGoogle Scholar
  5. Chatr-aryamontri A, Ceol A, Montechi Palazzi L et al (2007) MINT: the Molecular INTeraction database. Nucleic Acids Res 35:D572–D574CrossRefGoogle Scholar
  6. Chen M (2002) Modelling and simulation of metabolic networks: Petri nets approach and perspective. In: Proceeding of “ESM 2002, 16th European Simulation Multiconference”, June 3–5, Darmstadt, Germany, pp 441–444Google Scholar
  7. Chen M, Hofestädt R (2003) Quantitative Petri net model of gene regulated metabolic networks in the cell. In Silico Biol 3(3):347–365Google Scholar
  8. Chen M, Freier A, Hofestädt R (2005) Bioinformatics approaches for metabolic pathways. In: Sensen CW (ed) Handbook of genome research. WILEY–VCH Verlag GmbH & Co., Weinheim, pp 461–490CrossRefGoogle Scholar
  9. Comet J, Klaudel H, Liauzu S (2005) Modeling multi-valued genetic regulatory networks using high-level Petri nets. Lect Notes Comput Sci 3536:208–227MathSciNetCrossRefGoogle Scholar
  10. Costanza R, Voinov A (2001) Modelling ecological and economic systems with STELLA: part III. Ecol Model 143(1–2):1–7CrossRefGoogle Scholar
  11. David R, Alla H (1992) Petri nets and Grafcet–tools for modeling discrete event systems. Prentice Hall, Upper Saddle RiverGoogle Scholar
  12. Doi A, Drath R, Nagasaki M et al (1999) Protein dynamics observations of lambda phage by hybrid Petri net. Genome Inform 10:217–218Google Scholar
  13. Doi A, Nagasaki M, Matsuno H et al (2006) Simulation-based validation of the p53 transcriptional activity with hybrid functional Petri net. In Silico Biol 6:0001Google Scholar
  14. Drath R (1998) Hybrid object nets: an object oriented concept for modeling complex hybrid systems. In: Proc. Hybrid dynamical systems, 3rd international conference on automation of mixed processes, ADPM’98, pp 437–442Google Scholar
  15. Funahashi A, Tanimura N, Morohashi M et al (2003) Cell Designer: a process diagram editor for gene-regulatory and biochemical networks. Biosilico 1:159–162CrossRefGoogle Scholar
  16. Garvey TD, Lincoln P, Pedersen CJ et al (2003) BioSPICE: access to the most current computational tools for biologists. OMICS 7:411–420CrossRefGoogle Scholar
  17. Gene Ontology Consortium (2006) The Gene Ontology (GO) project in 2006. Nucleic Acids Res 34:D322–D326CrossRefGoogle Scholar
  18. Genrich H, Kueffner R, Voss K (2001) Executable Petri net models for the analysis of metabolic pathways. Int J STTT 3(4):394–404zbMATHGoogle Scholar
  19. Gilbert D, Heiner M, Rosser S, Fulton R, Gu X, Trybilo M (2008) A case study in model-driven synthetic biology. In: IFIP WCC 2008, 2nd IFIP conference on biologically inspired collaborative computing (BICC 2008), vol 268, Milano, September 2008. Springer, Boston, IFIP, pp 163–175Google Scholar
  20. Goryanin I, Hodgman TC, Selkov E (1999) Mathematical simulation and analysis of cellular metabolism and regulation. Bioinformatics 15:749–758CrossRefGoogle Scholar
  21. Goss PJE, Peccoud J (1998) Quantitative modeling of stochastic systems in molecular biology by using stochastic Petri nets. Proc Natl Acad Sci USA 95:6750–6755CrossRefGoogle Scholar
  22. Goss PJE, Peccoud J (1999) Analysis of the stabilizing effect of Rom on the genetic network controlling ColE1 plasmid replication. In: Pacific symposium on biocomputing’99, pp 65–76Google Scholar
  23. Gronewold A, Sonnenschein M (1997) Asynchronous layered cellular automata for the structured modeling of ecological systems. In: 9th European simulation symposium (ESS’97), SCS, pp 286–290Google Scholar
  24. Gronewold A, Sonnenschein M (1998) Event-based modeling of ecological systems with asynchronous cellular automata. Ecol Model 108:37–52CrossRefGoogle Scholar
  25. Hamosh A, Scott AF, Amberger JS et al (2005) Online Inheritance in Man (OMIM), a knowledgebase of human gene and genetic disorders. Nucleic Acid Res 33:D514–D517CrossRefGoogle Scholar
  26. Heiner M, Koch I, Will J (2004) Model validation of biological pathways using Petri nets–demonstrated for apoptosis. Biosystems 75:15–28CrossRefGoogle Scholar
  27. Heiner M, Richter R, Schwarick M, Rohr C (2008a) Snoopy—a tool to design and execute graph-based formalisms. Petri Net Newsl 74:8–22Google Scholar
  28. Heiner M, Gilbert D, Donaldson R (2008b) Petri nets for systems and synthetic biology. In: Bernardo M, Degano P, Zavattaro G (eds) SFM 2008, LNCS, vol 5016. Springer, Heidelberg, pp 215–264Google Scholar
  29. Hofestädt R (1994) A Petri net application to model metabolic processes. SAMS 16:113–122zbMATHGoogle Scholar
  30. Hofestädt R, Thelen S (1998) Quantitative modeling of biochemical networks. In Silico Biol 1:39–53Google Scholar
  31. Hoops S, Sahle S, Gauges R et al (2006) COPASI—a COmplex PAthway SImulator. Bioinformatics 22:3067–3074CrossRefGoogle Scholar
  32. Hu ZJ, Mellor J, Wu J et al (2004) VisANT: an online visualization and analysis tool for biological interaction data. BMC Bioinform 5:17CrossRefGoogle Scholar
  33. Huang H, Barker WC, Chen Y et al (2003) iProClass: an integrated database of protein family, function and structure information. Nucleic Acids Res 31(1):390–392CrossRefGoogle Scholar
  34. Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318–356CrossRefGoogle Scholar
  35. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acid Res 28(1):27–30CrossRefGoogle Scholar
  36. Kauffman S (1969) Metabolic stability and epigenesis in randomly connected nets. J Theor Biol 11:326–356Google Scholar
  37. Kitano H, Funahashi A, Matsuoka Y et al (2005) Using process diagram for the graphical representation of biological networks. Nat Biotechnol 23(8):961–966CrossRefGoogle Scholar
  38. Koh G, Teong H, Clément V et al (2006) A decompositional approach to parameter estimation in pathway modeling: a case study of the Akt and MAPK pathway and their crosstalk. Bioinformatics 2:271–280CrossRefGoogle Scholar
  39. Kueffner R, Zimmer R, Lengauer T (2000) Pathway analysis in metabolic databases via differential metabolic display (DMD). Bioinformatics 16(9):825–836CrossRefGoogle Scholar
  40. Lee D, Zimmer R, Lee S et al (2006) Colored Petri net modeling and simulation of signal transduction pathways. Metab Eng 8:112–122CrossRefGoogle Scholar
  41. Loew LM, Schaff JC (2001) The virtual cell: a software environment for computational cell biology. Trends Biotechnol 19:401–406CrossRefGoogle Scholar
  42. Matsuno H, Doi A, Nagasaki M et al (2000) Hybrid Petri net representation of gene regulatory network. Pac Symp Biocomput 5:338–349Google Scholar
  43. Matsuno H, Doi A, Drath R et al (2001) Genomic Object Net: basic architecture for representing and simulating biopathways. In: RECOMB’2001, April 20, Montréal, CanadaGoogle Scholar
  44. Matsuno H, Murakami R, Yamane R et al (2003) Boundary formation by notch signaling in Drosophila multicellular systems: experimental observations and a gene network modeling by Genomic Object Net. Pac Symp Biocomput :152–163Google Scholar
  45. Mendes P (1993) GEPASI: a software package for modeling the dynamics, steady states and control of biochemical and other systems. Comput Appl Biosci :563–571Google Scholar
  46. Michaelis L, Menten ML (1913) Die Kinetik der Invertinwirkung. Biochem Z 49:333–369Google Scholar
  47. Michal G (1982) Biochemical pathways wall chart. Boehringer Mannheim GmbH Biochemica, MannheimGoogle Scholar
  48. Nagasaki M, Doi A, Matsuno H et al (2003) Genomic Object Net: a platform for modelling and simulating biopathways. Appl Bioinform 2(3):181–184Google Scholar
  49. Nagasaki M, Doi A, Matsuno H et al (2004) Integrating biopathway databases for large-scale modeling and simulation. In: The second Asia–Pacific bioinformatics conferences, volume 29 of conferences in research and practice in information technology, Australian Computer Society, pp 43–52Google Scholar
  50. Petri CA (1962) Kommunikation mit Automaten. Dissertation, Institut für Instrumentelle Mathematik, Schriften des IIM Nr. 2, BonnGoogle Scholar
  51. Reddy VN, Mavrovouniotis ML, Liebman MN (1993) Petri Net representation in metabolic pathways. In: Proceedings first international conference on intelligent systems for molecular biology, AAAI Press, Menlo Park, pp 328–336Google Scholar
  52. Reisig WA (1982) Primer in Petri Net design. Springer, BerlinGoogle Scholar
  53. Ruth M, Hannon B (1997) Modeling dynamic biological systems. Springer, New YorkzbMATHGoogle Scholar
  54. Sackmann A, Heiner M, Koch I (2006) Application of Petri net based analysis techniques to signal transduction pathways. BMC Bioinform 7:482CrossRefGoogle Scholar
  55. Sauro HM (1993) SCAMP: a general-purpose simulator and metabolic control analysis program. Comput Appl Biosci 9:441–450Google Scholar
  56. Shaw O, Steggles J, Wipat A (2005) Automatic parameterisation of stochastic Petri net models of biological network. Electron Notes Theor Comput Sci (ENTCS) 153:111–129Google Scholar
  57. Siepel A, Farmer A, Tolopko A et al (2001) ISYS: a decentralized, component-based approach to the integration of heterogeneous bioinformatics resources. Bioinformatics 17:83–94CrossRefGoogle Scholar
  58. Simao E, Remy E, Thieffry D et al (2005) Qualitative Modeling of regulated metabolic pathways: application to the tryptophan biosynthesis in E. coli. Bioinformatics 21:190–196CrossRefGoogle Scholar
  59. Steggles L, Banks R, Shaw O et al (2007) Qualitatively modeling and analysing genetic regulatory networks: a Petri net approach. Bioinformatics 23:336–343CrossRefGoogle Scholar
  60. Tomita M, Hashimoto K, Takahashi K et al (1999) E-CELL: software environment for whole-cell simulation. Bioinformatics 15:72–84CrossRefGoogle Scholar
  61. Troncale S, Tahi F, Campard D et al (2006) Modeling and simulation with hybrid functional Petri nets of the role of Interleukin-6 in human early haematopoiesis. Pac Symp Biocomput 11:427–438CrossRefGoogle Scholar
  62. Valk R (1978) Self-modifying nets: a natural extension of Petri nets. LNCS 62:464–476MathSciNetGoogle Scholar
  63. Voss K, Heiner M, Koch I (2003) Steady state analysis of metabolic pathways using Petri nets. In Silico Biol 3:0031Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Ming Chen
    • 1
  • Sridhar Hariharaputran
    • 2
  • Ralf Hofestädt
    • 2
  • Benjamin Kormeier
    • 2
  • Sarah Spangardt
    • 2
  1. 1.Bioinformatics Department, College of Life SciencesZhejiang UniversityHangzhouChina
  2. 2.Bioinformatics Department, Faculty of TechnologyBielefeld UniversityBielefeldGermany

Personalised recommendations