Afshinmanesh F, Marandi A, Rahimi-Kian A (2005) A novel binary particle swarm optimization method using artificial immune system. EuroCon 2005 – The international conference on computer as a tool, Serbia & Montenegro, Belgrade

Al-kazemi B, Mohan CK (2002) Multi-phase Discrete Particle Swarm Optimization. Proceedings of fourth international workshop on frontiers in evolutionary algorithms (FEA 2002)

Angeline PJ (1998a) Evolutionary optimization versus particle swarm optimization: philosophy and performance differences. 7th Annual conf evolutionary programming

Angeline PJ (1998b) Using Selection to Improve Particle Swarm Optimization. Proceedings of IEEE congress on evolutionary computation, Anchorage, Alaska

Blackwell TM, Bentley PJ (2002) Dynamic search with charged swarms. Proceedings of the genetic and evolutionary computation conference 2002 (GECCO 2002), New York, NY, USA, pp 19–26

Bremermann HJ (1958) The evolution of intelligence. The Nervous System as a Model of its Environment. Technical report, no 1, contract no 477(17), Dept Mathematics, Univ Washington, Seattle, July, 1958

Calude CS, Paun G, Tataram M (2001) A Glimpse into natural computing. CDMTCS Tech Rep 117, Univ of Auckland, 2000 and J Multi-Valuate Logic 7:1–28

Cantú-Paz E (2000) Efficient and accurate parallel genetic algorithms. Kluwer Academic Publishers

Carlisle A, Dozier G (2000) Adapting particle swarm optimization to dynamic environments. Proceedings of international conference on artificial intelligence, vol 1, pp 429–434, Las Vegas, NV

Carlisle A, Dozier G (2001a) Tracking changing extrema with particle swarm optimizer. Auburn University Technical Report CSSE01-08

Carlisle A, Dozier G (2001b) An Off-The-Shelf PSO. Proceedings of workshop on particle swarm optimization. Indianapolis, IN

Carlisle A, Dozier G (2002) Tracking changing extrema with adaptive particle swarm optimizer. Proceeding of WAC 2002, Orlando, Florida

Chang J-F, Chu S-C, Roddick JF, Pan JS (2005) A parallel particle swarm optimization algorithm with communication strategies. J Information Sci Eng 21:809–818

Google ScholarClerc M, Kennedy J (2002) The particle swarm: explosion, stability and convergence in a multi-dimensional complex space. IEEE Trans Evol Comput 6:58–73

CrossRefGoogle ScholarClerc M (2003) TRIBES – Un Exemple D’Optimisation par Essaim Particulaire Sans Parametres de Contrôle. In: Optimisation par Essaim Particulaire (OEP 2003), Paris, France

Colorni A, Dorigo M, Maniezzo V (1991) Distributed Optimization by Ant Colonies. Proceedings of European conference on artificial life, Paris, France, pp 134–142

Cui X, Hardin CT, Ragade RK, Potok TE, Elmagraghby AS (2005) Tracking non-stationary optimal solution by particle swarm optimizer. Proceedings of the sixth international conference on software engineering, artificial intelligence, networking and parallel/distributed computing and first acis international workshop on self-assembling wireless networks (SNPD/SAWN’05)

Di Caro G, Dorigo M (1998) AntNet: Distributed Stigmergetic Control for Communications Networks. J Artificial Intelligence Res (JAIR) 9:317–365

MATHGoogle ScholarDorigo M, Stützle T (2004) Ant colony optimization. MIT Press

Eberhart RC, Simpson P, Dobbins R (1996) Computational intelligence PC tools. AP Professional, San Diego, CA, Chapter 6, pp 212–226

Google ScholarEberhart RC, Shi Y (2000) Comparing Inertia Weights and Constriction Factors in Particle Swarm Optimization. Proceedings of IEEE congress evolutionary computation, San Diego, CA, pp 84–88

Eberhart RC, Shi Y (2001) Tracking and optimizing dynamic systems with particle swarms. Proceedings of the 2001 congress on evolutionary computation, vol 1, pp 94–100

Feigenbaum EA, Buchanan BG, Lederberg J (1971) On Generality and Problem Solving: A Case Study using the DENDRAL Program. In: Meltzer B, Michie D (eds) Machine Intelligence, 6th edn. American Elsevier, New York, pp 165–190

Google ScholarFogel LJ, Owens AJ, Walsh MJ (1966) Artificial intelligence thorough simulated evolution. John Wiley & Sons, Ltd, Chichester, UK

Google ScholarFriedberg RM (1958) A learning machine: Part I. IBM J 2–13

Gehlhaar DK, Fogel DB (1996) Tuning evolutionary programming for conformationally flexible molecular docking. In: Evolutionary programming: proceedings of the fifth annual conference on evolutionary programming February 29–March 3, 1996, San Diego, California, pp 419–429

Gies D, Rahmat-Samii Y (2003) Particle swarm optimization for reconfigurable phase-differentiated array design. Microwave Opt Technol Lett 38(3):168–175

CrossRefGoogle ScholarGoldberg D (1989) Genetic algorithms in search, optimization and machine learning. Addison Wesley

Haykin S (1999) Neural networks – a comprehensive foundation, 2nd edn. Pearson, Delhi, India

MATHGoogle ScholarHebb DO (1949) The organization of behavior. Wiley, New York

Google ScholarHeppner F, Grenander U (1990) A stochastic nonlinear model for coordinated bird flocks. In: Krasner S (eds) The ubiquity of chaos. AAAS Publications, Washington, DC

Google ScholarHolland JH (1962) Outline for a logical theory of adaptive systems. J Assoc Comput Machinery 3:297–314

Google ScholarHolland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbour

Google ScholarJohnson S (2001) Emergence: the connected lives of ants, brains, cities, and software. Scribner, New York

Google ScholarKaewkamnerdpong B, Bentley P (2005) Perceptive particle swarm optimization. Proceedings of the seventh international conference on adaptive and natural computing algorithms (ICCANGA 2005)

Kennedy J, Eberhart RC (1995) Particle swarm optimization. Proceedings of IEEE International Conference on Neural Networks, Piscataway, NJ, pp 1942–1948

Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm algorithm. Proceedings of the conference on systems, man and cybernetics, Piscataway, New Jersey, pp 4104–4109

Kennedy J (1997) The particle swarm: social adaptation of knowledge. Proceedings of international conference evolutionary computation, IEEE, pp 303–308, Piscataway, NJ

Kennedy J (1999) Small Worlds and Mega-Minds: Effects of Neighborhood Topology on Particle Swarm Performance. Proceedings of IEEE Congress on Evolutionary Computation, Piscataway, NJ

Kennedy J (2000) Stereotyping: improving particle swarm performance with cluster analysis. Proceedings of IEEE congress on evolutionary computation, pp 1507–1512, San Diego, CA

Kennedy J, Eberhart RC, Shi Y (2001) Swarm intelligence. Morgan Kaufman, San Francisco, USA

Kennedy J, Mendes R (2002) Population structure and particle swarm performance. Proceedings of Congress on Evolutionary Computation 2:1671–1676

Google ScholarKennedy J (2003) Bare bones particle swarms. Proceedings of the IEEE swarm intelligence symposium 2003 (SIS 2003), Indianapolis, Indiana, USA, pp 80–87

Koza J (1992) Genetic Programming: on the programming of computers by means of natural selection. MIT Press, Cambridge, MA

MATHGoogle ScholarKrink T, Vestertroem JS, Riget J (2002) Particle swarm optimization with spatial particle extension. Proceedings of the IEEE congress on evolutionary computation (CEC 2002), Honolulu, Hawaii (2002)

Laskari EC, Parsopoulos KE, Vrahatis MN (2002) Particle swarm optimization for integer programming. Proceedings of the IEEE

McCulloch WS, Pitts W (1943) A logical calculus of the ideas imminent in nervous activity. Bull Mathematical Biophys 5:115–133

MATHMathSciNetCrossRefGoogle ScholarMendes R, Kennedy J, Neves J (2003) Watch thy neighbor or how the swarm can learn from its environment. Proceedings of IEEE swarm intelligence symposium, Indianapolis, Indiana, pp 88–94

Minsky M (1986) The society of mind. Simon and Schuster, New York

Google ScholarMonson CK, Seppi KD (2004) The Kalman swarm. Proceedings of the genetic and evolutionary computation conference (GECCO), Seattle, Washington

Monson CK, Seppi KD (2005a) Bayesian optimization models for particle swarm. Proceedings of genetic and evolutionary computation conference (GECCO), ACM, Washington, DC

Monson CK, Seppi KD (2005b) Improving on the Kalman swarm extracting its essential characteristics. Proceedings of genetic and evolutionary computation conference (GECCO), ACM, Washington, DC

Nelder JA, Mead R (1965) A Simplex Method for Function Minimization. Computer J 7:308–313

Google ScholarOzcan E, Mohan CK (1998) Analysis of a simple particle swarm optimization system. Intelligent Engineering Systems Through Artificial Neural Networks 253–258

Ozcan E, Mohan CK (1999) Particle swarm optimization: surfing the waves. Proceedings of IEEE congress on evolutionary computation, Washington, DC

Parrott D, Li X (2004) A particle swarm model for tracking multiple peaks in a dynamic environment using speciation. In: Proceeding of the 2004 congress on evolutionary computation (CEC’04), IEEE Service Center, Piscataway, NJ, pp 98–103, 08855-1331

Parsopoulos KE, Vrahatis MN (2002) Initializing the particle swarm optimizer using the nonlinear simplex method. Advances in intelligent systems, fuzzy systems, evolutionary computation, pp 216–221

Parsopoulos KE, Vrahatis MN (2004) UPSO: a unified particle swarm optimization scheme. In: Lecture series on computer and computational sciences, Proceedings of international conference on computational methods in sciences and engineering (ICCMSE 2004), VSP International Science Publishers, Zeist, The Netherlands, pp 868–873

Parsopoulos KE, Vrahatis MN (2005a) Unified Particle Swarm Optimization in Dynamic Environments. In: Rothlauf F et al (eds) EvoWorkshops 2005, LNCS 3449, pp 590–599

Parsopoulos KE, Vrahatis MN (2005b) Unified particle swarm optimization for tackling operations research problems. Proceedings swarm intelligence symposium SIS 2005, pp 53–59

Ratnaweera A, Halgamuge SK, Watson HC (2004) Self-organising hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans Evol Comput 8(3):240–255

CrossRefGoogle ScholarRechenberg I (1965) Cybernetic solution path of an experimental problem. Royal Aircraft Establishment, Library Translation No 1122, August

Reeves WT (1983) Particle systems – a technique for modeling a class of fuzzy objects. ACM Trans Graphics 2(2):91–108

CrossRefGoogle ScholarReynolds CW (1987) Flocks, herds, and schools: a distributed behavioral model. Computer Graphics 21(4):25–34 (Proc SIGGRAPH ’87)

MathSciNetCrossRefGoogle ScholarRiget J, Vesterstrøm JS (2002) A diversity-guided particle swarm optimizer – the ARPSO. EVALife Technical Report no 2002–2002

Shi Y, Eberhart RC (1998) A modified particle swarm optimizer. Proceedings of the IEEE international conference on evolutionary computation, pp 69–73. IEEE Press, Piscataway, NJ

Schutte JF, Reinbolt JA, Fregly BJ, Haftka RT, George AD (2004) Parallel Global Optimization with the Particle Swarm Algorithm. Int J Numer Meth Eng 61(13):2296–2315, John Wiley and Sons Ltd, Great Britain

Google ScholarSilva A, Neves A, Costa E (2002) An empirical comparison of particle swarm and predator prey optimization. In Proceedings of 13th Irish international conference on artificial intelligence and cognitive science 2464:103–110

Sipper M, Sanchez E, Mange D, Tomassini M, Pérez-Uribe A, Stauffer A (1998) An introduction to bio-inspired machines. In: Mange D, Tomassini M (eds) Bio-inspired computing machines towards novel computational architectures. Presses Polytechniques et Universitaires Romandes, Luasanne, Switzerland, pp 1–12

Google ScholarStorn R, Price K (1995) Differential Evolution – A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces. Technical Report TR-95-012, ICSI Available from:

http://http.icsi.berkeley.edu/∼storn/litera.html
Trelea IC (2003) The particle swarm optimization algorithm: convergence analysis and parameter selection. Information Processing Lett 85:317–325

MathSciNetCrossRefGoogle ScholarTuring AM (1952) The chemical basis of morphogenesis. Philosophical Trans Royal Society of London, series B 641:237

Google Scholarvan den Bergh F, Engelbrecht AP (2002) A new locally convergent particle swarm optimizer. Proceedings of IEEE conference on systems, man and cybernetics, Hammamet, Tunisia

Veeramachaneni K, Peram T, Mohan CK, Osadciw LA (2003) Optimization using particle swarms with near neighbor interactions. Proceedings of genetic and evolutionary computation conference (GECCO), LNCS 2723, Chicago, IL, pp 110–121

Venter G, Sobieszczanski-Sobieski J (2005). A parallel particle swarm optimization algorithm accelerated by asynchronous evaluations. 6th world congresses of structural and multidisciplinary optimization. Rio de Janerio, Brazil, 30 May–03 June 2005

Wolpert DH, Macready WG (1997) No Free Lunch Theorems for Optimization. IEEE Trans Evol Comput 1(1):67–82

CrossRefGoogle ScholarXie XF, Zhang WJ, Yang ZL (2002) A dissipative particle swarm optimization. Congress on evolutionary computation, Honolulu, HI, USA, 2002:1456–1461

Zhang L, Yu H, Hu S (2005) Optimal choice of parameters for particle swarm optimization. J Zhejiang Univ Sci 528–534