Natural Computing

, Volume 5, Issue 2, pp 165–181 | Cite as

Characterization of Non-crosshybridizing DNA Oligonucleotides Manufactured in vitro

  • J. Chen
  • R. Deaton
  • M. Garzon
  • J. -W. Kim
  • D. H. Wood
  • H. Bi
  • D. Carpenter
  • Y. -Z. Wang
Article

Abstract

Libraries of DNA oligonucleotides manufactured by an in vitro selection protocol were characterized for their non-crosshybridizing properties. Cloning and sequencing after several iterations of the protocol showed that the sequences, in general, became more non-crosshybridizing. Gel electrophoresis of protocol product, also, indicated non-crosshybridization, and showed evolution in the population of molecules under the non-crosshybridization selection pressure. Melting curves of protocol product also indicated non-crosshybridization when compared to control samples. Thus, it appears that the protocol does select populations of non-crosshybridizing sequences.

Keywords

DNA computing melting temperature nanotechnology word design 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adleman, LM 1994Molecular computation of solutions to combinatorial problemsScience26610211024Google Scholar
  2. Allawi, HT, SantaLucia, J,Jr 1997Thermodynamics and NMR of internal G·C mismatches in DNABiochemistry361058110594CrossRefGoogle Scholar
  3. Bloomfield, VA, Crothers, DM, Tinoco, I,Jr 2000Nucleic Acids: Structures, Properties, and FunctionsUniversity Science BooksSausalito, CAGoogle Scholar
  4. Borer, PN, Dengler, B, Tinoco, I,Jr, Uhlenbeck, OC 1974Stability of ribonucleic acid double-stranded helicesJournal of Molecular Biology86843853CrossRefGoogle Scholar
  5. Braich, RS, Chelyapov, N, Johnson, C, Rothemund, PWK, Adleman, L 2002Solution of a 20-Variable 3-SAT Problem on a DNA ComputerScience296499502CrossRefGoogle Scholar
  6. Britten, RJ, Kohne, DE 1968Repeated sequences in DNAScience161529540Google Scholar
  7. Charlton, J, Smith, D 1999Estimation of SELEX pool size by measurement of DNA renaturation ratesRNA513261332CrossRefGoogle Scholar
  8. Chee, M, Yang, R, Hubbell, E, Berno, A, Huang, XC, Stern, D, Winkler, J, Lockhart, DJ, Morris, MS, Fodor, SPA 1996Accessing genetic information with high-density DNA arraysScience274610614CrossRefGoogle Scholar
  9. Deaton R, Chen J, Bi H, Garzon M, Rubin H and Wood DH (2003a) A PCR-based protocol for in vitro selection of non-crosshybridizing oligonucleotides. in Hagiya and Ohuchi (2003), pp 196–204. Lecture Notes in Computer Science 2568Google Scholar
  10. Deaton R, Chen J, Bi H and Rose JA (2003b) A software tool for generating non-crosshybridizing libraries of DNA oligonucleotides. in Hagiya and Ohuchi (2003), pp 252–261. Lecture Notes in Computer Science 2568Google Scholar
  11. Deaton, R, Kim, JW, Chen, J 2003cDesign and test of non-crosshybridizing oligonucleotide building blocks for DNA computers and nanostructuresApplied Physics Letters8213051307CrossRefGoogle Scholar
  12. Hagiya M and Ohuchi A (eds) (2003) DNA Computing: Eighth International Workshop on DNA-Based Computers. Berlin: University of Tokyo, Hokkaido University, Sapporo, Japan, June 2002, Springer-Verlag. Lecture Notes in Computer Science 2568Google Scholar
  13. Krivelevich, M, Sudakov, B, Vu, VH, Wormald, N 2003On the probability of independent sets in random graphsRandom Structures and Algorithms22114MathSciNetCrossRefGoogle Scholar
  14. Mao, C, Sun, W, Shen, Z, Seeman, N 1999A DNA nanomechanical device based on the B–Z transitionNature397144146CrossRefGoogle Scholar
  15. Mauri G and Ferretti C (2004) Word design for molecular computing: a survey. In: Chen J and Reif J (eds) DNA Computing: Ninth International Workshop on DNA-Based Computers. Berlin, pp 37–46. Lecture Notes in Computer Science 2943Google Scholar
  16. Mirkin, C, Letsinger, RL, Mucic, RC, Storhoff, JJ 1996A DNA-based method for rationally assembling nanoparticles into macroscopic materialsNature382607609CrossRefGoogle Scholar
  17. Nuser M (2004) Models of large sets of non-crosshybridizing DNA oligonucleotides. Ph.D. thesis, University of ArkansasGoogle Scholar
  18. Nuser, M, Deaton, R 2003Simulations of DNA computing with in vitro selectionGenetic Programming and Evolvable Machines4173183CrossRefGoogle Scholar
  19. Penchovsky, R, Ackermann, J 2003DNA library design for molecular computationJournal of Computational Biology10215229CrossRefGoogle Scholar
  20. SantaLucia, J,Jr. 1998A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamicsProceedings of the National Academy Science9514601465CrossRefGoogle Scholar
  21. Wetmur, JG 1991DNA probes: applications of the principle of nucleic acid hybridizationCritical Reviews in Biochemistry and Molecular Biology26227259Google Scholar
  22. Winfree, E, Liu, F, Wenzler, LA, Seeman, NC 1998Design and self-assembly of two-dimensional DNA crystalsNature394539544CrossRefGoogle Scholar
  23. Yu W (2005) Generating large libraries of non-crosshybridizing DNA oligonucleotides. Ph.D. thesis, University of ArkansasGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • J. Chen
    • 1
  • R. Deaton
    • 2
  • M. Garzon
    • 3
  • J. -W. Kim
    • 4
  • D. H. Wood
    • 5
  • H. Bi
    • 1
  • D. Carpenter
    • 4
  • Y. -Z. Wang
    • 1
  1. 1.Chemistry and BiochemistryUniversity of DelawareNewarkUSA
  2. 2.Computer Science and EngineeringUniversity of ArkansasFayettevilleUSA
  3. 3.Computer ScienceUniversity of MemphisMemphisUSA
  4. 4.Biological EngineeringUniversity of ArkansasFayettevilleUSA
  5. 5.Computer and Information SciencesUniversity of DelawareNewarkUSA

Personalised recommendations