Natural Computing

, Volume 4, Issue 1, pp 1–10 | Cite as

Protein output for DNA computing

  • Christian V. Henkel
  • Reno S. Bladergroen
  • Crina I. A. Balog
  • André M. Deelder
  • Tom Head
  • Grzegorz Rozenberg
  • Herman P. Spaink
Article

Abstract

In recent years, several strategies for DNA based molecular computing have been investigated. An important area of research is the detection and analysis of output molecules. We demonstrate how DNA computing can be extended with in vivo translation of the output. In the resulting proteins, the information per kilogram is about 15-fold higher than in the original DNA output. The proteins are therefore of correspondingly smaller mass, which facilitates their subsequent detection using highly sensitive mass spectrometry methods. We have tested this approach on an instance of the Minimal Dominating Set problem. The DNA used in the computation was constructed as an open reading frame in a plasmid, under the control of a strong inducible promoter. Sequential application of restriction endonucleases yielded a library of potential solutions to the problem instance. The mixture of plasmids was then used for expression of a protein representation. Using MALDI-TOF mass spectrometry, a protein corresponding to the correct solution could be detected. The results indicate the feasibility of the extension of DNA computing to include protein technology. Our strategy opens up new possibilities for both scaling of DNA computations and implementations that employ output of functional molecules or phenotypes.

Keywords

DNA computing plasmid computing proteomics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adleman, LM 1994Molecular computation of solutions to combinatorial problemsScience26610211024PubMedGoogle Scholar
  2. Bäck, T, Kok, JN, Rozenberg, G 2003

    Evolutionary computation as a paradigm for DNA-based computing

    Landweber, LFWinfree, E eds. Evolution as Computation (DIMACS Workshop, Princeton, January 1999)Springer-VerlagHeidelberg1540
    Google Scholar
  3. Benenson, Y, Paz-Elizur, T, Adar, R, Keinan, E, Livneh, Z, Shapiro, E 2001Programmable and autonomous computing machine made of biomoleculesNature414430434Google Scholar
  4. Blank, PS, Sjomeling, CM, Backlund, PS, Yergey, AL 2002Use of cumulative distribution functions to characterize mass spectra of intact proteinsJournal of the American Society for Mass Spectrometry134046Google Scholar
  5. Braich, RS, Chelyapov, N, Johnson, C, Rothemund, PWK, Adleman, LM 2002Solution of a 20-variable 3-SAT problem on a DNA computerScience296499502Google Scholar
  6. Chalmers, MJ, Gaskell, SJ 2000Advances in mass spectrometry for proteome analysisCurrent Opinion in Biotechnology11384390Google Scholar
  7. Chen, J, Wood, DH 2000Computation with biomoleculesProceedings of the National Academy of Sciences of the United States of America9713281330Google Scholar
  8. Cox, JPL 2001Long-term data storage in DNATrends in Biotechnology19247250Google Scholar
  9. Faulhammer, D, Cukras, AR, Lipton, RJ, Landweber, LF 2000Molecular computation: RNA solutions to chess problemsProceedings of the National Academy of Sciences of the United States of America9713851389Google Scholar
  10. Garey, MR, Johnson, DS 1979Computers and Intractability. A Guide to the Theory of NP-completenessFreemanNew YorkGoogle Scholar
  11. Hagiya, M, Ohuchi, A 2003DNA Computing. 8th International Workshop on DNA Based ComputersSpringer-VerlagHeidelbergGoogle Scholar
  12. Head, T, Rozenberg, G, Bladergroen, RS, Breek, CKD, Lommerse, PHM, Spaink, HP 2000Computing with DNA by operating on plasmidsBiosystems578793Google Scholar
  13. Head, T, Chen, X, Nichols, MJ, Yamamura, M, Gal, S 2002

    Aqueous solutions of algorithmic problems: emphasizing knights on a 3 × 3

    Jonoska, NSeeman, NC eds. DNA Computing, 7th International Meeting on DNA Based ComputersSpringer-VerlagHeidelberg191202
    Google Scholar
  14. Jonoska, N, Seeman, NC 2002DNA Computing. 7th International Meeting on DNA Based ComputersSpringer-VerlagHeidelbergGoogle Scholar
  15. Liu, QH, Wang, L, Frutos, AG, Condon, AE, Corn, RM, Smith, LM 2000DNA computing on surfacesNature403175179CrossRefPubMedGoogle Scholar
  16. Mao, CD, LaBean, TH, Reif, JH, Seeman, NC 2000Logical computation using algorithmic self-assembly of DNA triple-crossover moleculesNature407493496Google Scholar
  17. Normile, D 2002Molecular computing: DNA-based computer takes aim at genesScience295951Google Scholar
  18. Ouyang, Q, Kaplan, PD, Liu, S, Libchaber, A 1997DNA solution of the maximal clique problemScience278446449Google Scholar
  19. Paun, G, Rozenberg, G, Salomaa, A 1998DNA Computing. New Computing ParadigmsSpringer-VerlagHeidelbergGoogle Scholar
  20. Sakakibara, Y, Hohsaka, T 2003

    In vitro translation-based computations

    Chen, JReif, J eds. Preliminary Proceedings, 9th International meeting on DNA Based ComputersUniversity of WisconsinMadison, Wisconsin, USA1751791–4 June 2003, Madison, Wisconsin, USA
    Google Scholar
  21. Sakamoto, K, Gouzu, H, Komiya, K, Kiga, D, Yokoyama, S, Yokomori, T, Hagiya, M 2000Molecular computation by DNA hairpin formationScience28812231226Google Scholar
  22. Sambrook, J, Russell, DW 2001Molecular Cloning: a Laboratory Manual3Cold Spring Harbor Laboratory PressCold Spring Harbor, New YorkGoogle Scholar
  23. Schagger, H, Von, Jagow G 1987Tricine-sodium dodecyl sulfate-polyacrylamide gl electrophoresis for the separation of proteins in the range from 1 to 100 kDaAnalytical Biochemistry166368379Google Scholar
  24. Staehelin, C, Charon, C, Boller, T, Crespi, M, Kondorosi, A 2001Medicago truncatula plants overexpressing the early nodulin gene enod40 exhibit accelerated mycorrhizal colonization and enhanced formation of arbusculesProceedings of the National Academy of Sciences of the United States of America981536615371Google Scholar
  25. Vieira, J, Messing, J 1991New pUC-derived cloning vectors with different selectable markers and DNA replication originsGene100189194Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Christian V. Henkel
    • 1
    • 2
    • 3
  • Reno S. Bladergroen
    • 1
    • 2
  • Crina I. A. Balog
    • 4
  • André M. Deelder
    • 4
  • Tom Head
    • 5
  • Grzegorz Rozenberg
    • 1
    • 3
  • Herman P. Spaink
    • 1
    • 3
  1. 1.Leiden Center for Natural ComputingLeiden UniversityLeidenThe Netherlands
  2. 2.Institute of BiologyLeiden UniversityLeidenThe Netherlands
  3. 3.Leiden Institute of Advanced Computer ScienceLeiden UniversityLeidenThe Netherlands
  4. 4.Department of ParasitologyLeiden University Medical CenterLeidenThe Netherlands
  5. 5.Department of Mathematical SciencesBinghamton UniversityBinghamtonUSA

Personalised recommendations