Advertisement

Lineages Within the Trichophyton rubrum Complex

  • Ann PackeuEmail author
  • Dirk Stubbe
  • Sam Roesems
  • Karine Goens
  • Pascale Van Rooij
  • Sybren de Hoog
  • Marijke Hendrickx
Original Paper
  • 16 Downloads

Abstract

The most important species of the Trichophyton rubrum group are T. rubrum, causing mainly skin and nail infections, and T. violaceum which is mostly scalp-associated. The status of a third species, T. soudanense, has been under debate. With a polyphasic approach, using molecular phylogenetic techniques, MALDI-TOF mass spectrometry and physiological and morphological analysis, we re-evaluated the T. rubrum complex. Our results support four genetic lineages within the complex each with a distinct morphology and identifiable via MALDI-TOF MS: T. rubrum, T. violaceum, T. soudanense and the T. yaoundei clade. However, ITS and Bt2 sequencing data could not confirm these taxa as four monophyletic species. Our results also suggest that strains formerly identified as T. kuryangei and T. megninii should be considered in future taxonomic studies.

Keywords

Medical mycology Dermatophytes MALDI-TOF MS Taxonomy 

Notes

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Human and Animal Rights

No research involving human participants and/or animals was conducted.

Informed Consent

No studies involving human participants were carried out.

Supplementary material

11046_2019_386_MOESM1_ESM.pdf (139 kb)
Supplementary file1 (PDF 139 kb)

References

  1. 1.
    De Hoog GS, Dukik K, Monod M, Packeu A, Stubbe D, Hendrickx M, Kupsch C, Stielow JB, Freeke J, Göker M, Rezaei-Matehkolaei A, Mirhendi H, Gräser Y. Toward a novel multilocus phylogenetic taxonomy for the dermatophytes. Mycopathologia. 2017;182(1–2):5–31.CrossRefGoogle Scholar
  2. 2.
    Hayette MP, Sacheli R. Dermatophytosis, trends in epidemiology and diagnostic approach. Curr Fungal Infect Rep. 2015;9:164–79.CrossRefGoogle Scholar
  3. 3.
    Gräser Y, Kuijpers AF, Presber W, de Hoog GS. Molecular taxonomy of the Trichophyton rubrum complex. J Clin Microbiol. 2000;38(9):3329–36.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Zhan P, Dukik K, Li D, Sun J, Stielow JB, Gerrits van den Ende B, Brankovics B, Menken SBJ, Mei H, Bao W, Lv G, Liu W, de Hoog GS. Phylogeny of dermatophytes with genomic character evaluation of clinically distinct Trychophyton rubrum and T. violaceum. Stud Mycol. 2018;89:153–75.CrossRefGoogle Scholar
  5. 5.
    Ohst T, de Hoog S, Presber W, Stavrakieva V, Gräser Y. Origins of microsatellite diversity in the Trichophyton rubrumT. violaceum clade (Dermatophytes). J Clin Microbiol. 2004;42(10):4444–8.CrossRefGoogle Scholar
  6. 6.
    Gräser Y, Fröhlich J, Presber W, de Hoog S. Microsatellite markers reveal geographic population differentiation in Trichophyton rubrum. J Med Microbiol. 2007;56(Pt 8):1058–65.CrossRefGoogle Scholar
  7. 7.
    White TF, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky FS, White TT, editors. PCR protocol: a guide to methods and application. San Diego, CA: Academic Press; 1990. p. 315–322.Google Scholar
  8. 8.
    Glass NL, Donaldson GC. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Micobiol. 1995;61:1323–30.Google Scholar
  9. 9.
    Katoh Misawa K, Kuma K, Miyata T. MAFFT, a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucl Acids Res. 2002;30:3059–66.CrossRefGoogle Scholar
  10. 10.
    Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser. 1999;41:95–8.Google Scholar
  11. 11.
    Stamatakis A, Hoover P, Rougemont J. A rapid bootstrap algorithm for the RAxML Web servers. Syst Biol. 2008;57(5):758–71.CrossRefGoogle Scholar
  12. 12.
    Leigh J, Bryant D. POPART: full-feature software for haplotype network construction. Methods Ecol Evol. 2015;6:1110–6.CrossRefGoogle Scholar
  13. 13.
    Bandelt HJ, Forster P, Röhl A. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol. 1999;16(1):37–48.CrossRefGoogle Scholar
  14. 14.
    Cassagne C, Ranque S, Normand AC, Fourquet P, Thiebault S, Planard C, Hendrickx M, Piarroux R. Mould routine identification in the clinical laboratory by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. PLoS ONE. 2011;6(12):e28425.CrossRefGoogle Scholar
  15. 15.
    Normand AC, Cassagne C, Ranque S, L’Ollivier C, Fourquet P, Roesems S, Hendrickx M, Piarroux R. Assessment of various parameters to improve MALDI-TOF MS reference spectra libraries constructed for the routine identification of filamentous fungi. BMC Microbiol. 2013;8(13):76.CrossRefGoogle Scholar
  16. 16.
    Packeu A, De Bel A, L’Ollivier C, Ranque S, Detanct M, Hendrickx M. Fast and accurate identification of dermatophytes by matrix-assisted laser desorption ionization-time of flight mass spectrometry: validation in the clinical laboratory. J Clin Microbiol. 2014;52(9):3440–3.CrossRefGoogle Scholar
  17. 17.
    Liu D, Pearce L, Lilley G, Coloe S, Baird R, Pedersen J. PCR identification of dermatophyte fungi Trichophyton rubrum, T. soudanense and T. gourvilii. J Med Microbiol. 2002;51(2):117–22.CrossRefGoogle Scholar
  18. 18.
    Lamb SR, Rademaker M. Tinea due to Trichophyton violaceum and Trichophyton soudanense in Hamilton. N Z Aust J Dermatol. 2001;42(4):260–3.CrossRefGoogle Scholar
  19. 19.
    Magill SS, Manfredi L, Swiderski A, Cohen B, Merz WG. Isolation of Trichophyton violaceum and Trichophyton soudanense in Baltimore. Md J Clin Microbiol. 2007;45(2):461–5.CrossRefGoogle Scholar
  20. 20.
    Coulibaly O, Kone AK, Niaré-Doumbo S, Goïta S, Gaudart J, Djimdé AA, Piarroux R, Doumbo OK, Thera MA, Ranque S. Dermatophytosis among schoolchildren in three eco-climatic zones of Mali. PLoS Negl Trop Dis. 2016;10(4):e0004675.CrossRefGoogle Scholar
  21. 21.
    Farina C, Fazii P, Imberti G, Lombardi G, Passera M, Andreoni S. Trichophyton violaceum and T. soudanense: re-emerging pathogens in Italy, 2005–2013. Italian Association of Clinical Microbiology (AMCLI) Dermatophytes’ Study Group; AMCLI Dermatophytes’ Study Group. New Micobiol. 2015;38(3):409–15.Google Scholar
  22. 22.
    Kong F, Tong Z, Chen X, Sorrell T, Wang B, Wu Q, Ellis D, Chen S. Rapid identification and differentiation of Trichophyton species, based on sequence polymorphisms of the ribosomal internal transcribed spacer regions, by rolling-circle amplification. J Clin Microbiol. 2008;46(4):1192–9.CrossRefGoogle Scholar
  23. 23.
    Irinyi L, Lackner M, de Hoog GS, Meyer W. DNA barcoding of fungi causing infections in humans and animals. Fungal Biol. 2016;120(2):125–36.CrossRefGoogle Scholar
  24. 24.
    Zhan P, Dukik K, Li D, Sun J, Stielow JB, Gerrits van den Ende B, Brankovics B, Menken SBJ, Mei H, Bao W, Lv G, Liu W, de Hoog GS. Phylogeny of dermatophytes with genomic character evaluation of clinically distinct Trichophyton rubrum and T. violaceum. Stud Mycol. 2018;89:153–75.CrossRefGoogle Scholar
  25. 25.
    Varsavsky E, Ajello L. The perfect and imperfect forms of a new keratinophilic fungus Arthroderma ciferrii sp. nov.: Trichophyton georgii sp. nov. Riv. Patol. Veg. 1964;4:351–64.Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Service of Mycology and AerobiologySciensanoBrusselsBelgium
  2. 2.BCCM/IHEM fungal Collection, Service of Mycology and AerobiologySciensanoBrusselsBelgium
  3. 3.Center of Expertise in Mycology of Radboudumc/Canisius Wilhelmina HospitalNijmegenThe Netherlands
  4. 4.Westerdijk Fungal Biodiversity InstituteUtrechtThe Netherlands
  5. 5.MerelbekeBelgium

Personalised recommendations