Advertisement

Quantitation of Purines from Pigeon Guano and Implications for Cryptococcus neoformans Survival During Infection

  • Jessica L. Chitty
  • David J. Edwards
  • Avril A. B. Robertson
  • Mark S. Butler
  • John A. Duley
  • Matthew A. Cooper
  • James A. FraserEmail author
Original Paper

Abstract

The fertilizing properties of bird manure, or guano, have played an important role in plant cultivation for thousands of years. Research into its chemical composition by Unger in 1846 identified a novel compound, now known as guanine, a purine base that is essential for DNA and RNA biosynthesis and cell signalling. Nitrogen-rich guano can also harbour human pathogens, one significant example being the fungal pathogen Cryptococcus neoformans. Historically associated with pigeon droppings, C. neoformans is able to infect immunocompromised individuals with the aid of a number of adaptive virulence traits. To gain insight into this niche, a quantitative analysis of pigeon guano was performed by LC/MS to determine the concentrations of purines present. Guanine was found in abundance, in particular, in aged guano samples that contained 156–296 μg/g [w/w] compared to 75 μg/g in fresh guano. Adenine concentrations were more consistent between fresh and aged samples, 13 μg/g compared to 10–15 μg/g, respectively. C. neoformans strains that lack key enzymes of the de novo purine synthesis pathway and are guanine or adenine auxotrophs displayed differences in their ability to exploit this substrate: growth of a guanine auxotrophic mutant (gua1Δ) was partially restored on 30% pigeon guano media, but an adenine auxotrophic mutant (ade13Δ) was unable to grow. We conclude that while purine salvage is likely a useful resource-saving mechanism, alone it is not sufficient to fully provide the purines required by wild-type C. neoformans growing in its guano niche.

Keywords

Cryptococcus neoformans Purines Pigeon guano Adenine Guanine 

Notes

Acknowledgements

We thank Gary Newell of the Queensland Racing Pigeon Federation, Inc., for the provision of pigeon guano.

Funding

This study was funded by National Health and Medical Research Council, Project Grant APP1049716.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11046_2018_315_MOESM1_ESM.docx (976 kb)
Supplementary material 1 (DOCX 975 kb)

References

  1. 1.
    The Guano Isles. Perrysburg J. 1855.Google Scholar
  2. 2.
    Republics BotIUotA. Bulletin of the International Union of the American Republics. H doc 163. Washington; 1909.Google Scholar
  3. 3.
    Clifford CM, Hoogstraal H, Radovsky FJ, Stiller D, Keirans JE. Ornithodoros (alectorobius) amblus (Acarina: Ixodoidea: Argasidae): identity, marine bird and human hosts, virus infections, and distribution in Peru. J Parasitol. 1980;66(2):312–23.CrossRefGoogle Scholar
  4. 4.
    Sanfelice F. Sull’azione patogena dei bastomiceti. Ann Isto Igiene R Univ Roma. 1895;5:239–62.Google Scholar
  5. 5.
    Busse O. Uber parasitäre Zelleinschlüsse und ihre Zeichnung. Zentralbl Bakt Parasit 1894:16.Google Scholar
  6. 6.
    Vuillemin P. Les blastomycetes pathogenes. Revue Generale des Sciences Pures et Appliquees. 1901;12:732–51.Google Scholar
  7. 7.
    Espinel-Ingroff A. Medical mycology in the United States: a historical analysis (1894–1996). Dordrecht: Kluwer Academic Publishers; 2003.CrossRefGoogle Scholar
  8. 8.
    Staib F. Vogelkot, Ein Nahrsubstrat Fur Die Gattung Cryptococcus. Zbl Bakt Parasit. 1962;186(2):233–47.Google Scholar
  9. 9.
    Rosario Medina I, Roman Fuentes L, Batista Arteaga M, Real Valcarcel F, Acosta Arbelo F, Padilla Del Castillo D, et al. Pigeons and their droppings as reservoirs of Candida and other zoonotic yeasts. Revista Iberoamericana de Micologia. 2017.  https://doi.org/10.1016/j.riam.2017.03.001.CrossRefPubMedGoogle Scholar
  10. 10.
    Costa AK, Sidrim JJ, Cordeiro RA, Brilhante RS, Monteiro AJ, Rocha MF. Urban pigeons (Columba livia) as a potential source of pathogenic yeasts: a focus on antifungal susceptibility of Cryptococcus strains in Northeast Brazil. Mycopathologia. 2010;169(3):207–13.  https://doi.org/10.1007/s11046-009-9245-1.CrossRefPubMedGoogle Scholar
  11. 11.
    Wu Y, Du PC, Li WG, Lu JX. Identification and molecular analysis of pathogenic yeasts in droppings of domestic pigeons in Beijing, China. Mycopathologia. 2012;174(3):203–14.  https://doi.org/10.1007/s11046-012-9536-9.CrossRefPubMedGoogle Scholar
  12. 12.
    Gallo MG, Cabeli P, Vidotto V. Presence of pathogenic yeasts in the feces of the semi-domesticated pigeon (Columba livia, Gmelin 1789, urban type) from the city of Turin. Parassitologia. 1989;31(2–3):207–12.PubMedGoogle Scholar
  13. 13.
    Ellabib MS, Aboshkiwa MA, Husien WM, D’Amicis R, Cogliati M. Isolation, identification and molecular typing of Cryptococcus neoformans from pigeon droppings and other environmental sources in Tripoli, Libya. Mycopathologia. 2016;181(7–8):603–8.  https://doi.org/10.1007/s11046-016-9996-4.CrossRefPubMedGoogle Scholar
  14. 14.
    Magnus. Ueber das Vorkommen von Xanthicoxyd im Guano. Annalen der Chemie und Pharmacie. 1844;51(3):395–7.  https://doi.org/10.1002/jlac.18440510309.CrossRefGoogle Scholar
  15. 15.
    Unger B. Bemerkungen zu obiger Notiz. Annalen der Chemie und Pharmacie. 1846;58(1):18–20.  https://doi.org/10.1002/jlac.18460580104.CrossRefGoogle Scholar
  16. 16.
    Staib F, Seeliger HP. A new selective medium for the isolation of C. neoformans from fecal material and from soil. Ann Inst Pasteur (Paris). 1966;110(5):792–3.Google Scholar
  17. 17.
    Morrow CA, Valkov E, Stamp A, Chow EW, Lee IR, Wronski A, et al. De novo GTP biosynthesis is critical for virulence of the fungal pathogen Cryptococcus neoformans. PLoS Pathog. 2012;8(10):e1002957.  https://doi.org/10.1371/journal.ppat.1002957.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Blundell RD, Williams SJ, Arras SDM, Chitty JL, Blake KL, Ericsson DJ, et al. Disruption of de novo adenosine triphosphate (ATP) biosynthesis abolishes virulence in Cryptococcus neoformans. ACS Infect Dis. 2016;2(9):651–63.  https://doi.org/10.1021/acsinfecdis.6b00121.CrossRefPubMedGoogle Scholar
  19. 19.
    Lee IR, Yang L, Sebetso G, Allen R, Doan TH, Blundell R, et al. Characterization of the complete uric acid degradation pathway in the fungal pathogen Cryptococcus neoformans. PLoS ONE. 2013;8(5):e64292.  https://doi.org/10.1371/journal.pone.0064292.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Chitty JL, Fraser JA. Purine acquisition and synthesis by human fungal pathogens. Microorganisms. 2017;5(2):33.  https://doi.org/10.3390/microorganisms5020033.CrossRefPubMedCentralGoogle Scholar
  21. 21.
    Rodriguez-Nunez A, Camina F, Lojo S, Rodriguez-Segade S, Castro-Gago M. Concentrations of nucleotides, nucleosides, purine bases and urate in cerebrospinal fluid of children with meningitis. Acta Paediatr. 1993;82(10):849–52.CrossRefGoogle Scholar
  22. 22.
    Fairbanks LD, Harris JC, Duley JA, Simmonds HA. Nucleotide degradation products in cerebrospinal fluid (CSF) in inherited and acquired pathologies. Nucleosides Nucleotides Nucleic Acids. 2004;23(8–9):1185–7.  https://doi.org/10.1081/NCN-200027451.CrossRefPubMedGoogle Scholar
  23. 23.
    Nielsen K, De Obaldia AL, Heitman J. Cryptococcus neoformans mates on pigeon guano: implications for the realized ecological niche and globalization. Eukaryot Cell. 2007;6(6):949–59.  https://doi.org/10.1128/EC.00097-07.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Makkar HP, Becker K. Purine quantification in digesta from ruminants by spectrophotometric and HPLC methods. Br J Nutr. 1999;81(2):107–12.PubMedGoogle Scholar
  25. 25.
    Rong S, Zou L, Zhang Y, Zhang G, Li X, Li M, et al. Determination of purine contents in different parts of pork and beef by high performance liquid chromatography. Food Chem. 2015;170:303–7.  https://doi.org/10.1016/j.foodchem.2014.08.059.CrossRefPubMedGoogle Scholar
  26. 26.
    Chitta R, Pendela M, Yekkala R, Herijgers P, Hoogmartens J, Adams E. Determination of adenosine and inosine in sheep plasma using solid phase extraction followed by liquid chromatography with UV detection. Anal Lett. 2010;43(14):2267–74.  https://doi.org/10.1080/00032711003717323.CrossRefGoogle Scholar
  27. 27.
    Shi J, Liu HF, Wong JM, Huang RN, Jones E, Carlson TJ. Development of a robust and sensitive LC-MS/MS method for the determination of adenine in plasma of different species and its application to in vivo studies. J Pharm Biomed Anal. 2011;56(4):778–84.  https://doi.org/10.1016/j.jpba.2011.07.023.CrossRefPubMedGoogle Scholar
  28. 28.
    Simmonds HA, Duely JA, Davies PM. Analysis of purines and pyrimidines in blood, urine, and other physiological fluids. Techniques in diagnostic human biochmeical genetics. New York: Wiley; 1990. p. 397–424.Google Scholar
  29. 29.
    Chitty JL, Tatzenko TL, Williams SJ, Koh YQ, Corfield EC, Butler MS, et al. GMP synthase is required for virulence factor production and infection by Cryptococcus neoformans. J Biol Chem. 2017;292(7):3049–59.  https://doi.org/10.1074/jbc.M116.767533.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Chitty JL, Blake KL, Blundell RD, Koh Y, Thompson M, Robertson AAB, et al. Cryptococcus neoformans ADS lyase is an enzyme essential for virulence whose crystal structure reveals features exploitable in antifungal drug design. J Biol Chem. 2017;292(28):11829–39.  https://doi.org/10.1074/jbc.M117.787994.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Vega GIdl. Primera parte de los com entarios reales de los Incas. 1609.Google Scholar
  32. 32.
    Boston Society of Natural History. In: Proceedings of the Boston Society of Natural History, vol 1. Boston: Dutton and Wentworth; 1841.Google Scholar
  33. 33.
    Firestine SM, Misialek S, Toffaletti DL, Klem TJ, Perfect JR, Davisson VJ. Biochemical role of the Cryptococcus neoformans ADE2 protein in fungal de novo purine biosynthesis. Arch Biochem Biophys. 1998;351(1):123–34.  https://doi.org/10.1006/abbi.1997.0512.CrossRefPubMedGoogle Scholar
  34. 34.
    Perfect JR, Toffaletti DL, Rude TH. The gene encoding phosphoribosylaminoimidazole carboxylase (ADE2) is essential for growth of Cryptococcus neoformans in cerebrospinal fluid. Infect Immun. 1993;61(10):4446–51.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Jessica L. Chitty
    • 1
    • 2
  • David J. Edwards
    • 2
  • Avril A. B. Robertson
    • 2
  • Mark S. Butler
    • 2
  • John A. Duley
    • 3
  • Matthew A. Cooper
    • 1
    • 2
  • James A. Fraser
    • 1
    Email author
  1. 1.Australian Infectious Diseases Research Centre, School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaAustralia
  2. 2.Institute for Molecular BioscienceThe University of QueenslandSt LuciaAustralia
  3. 3.School of PharmacyThe University of QueenslandWoolloongabbaAustralia

Personalised recommendations