, Volume 183, Issue 6, pp 935–940 | Cite as

Up-Regulation of Antimicrobial Peptides Gallerimycin and Galiomicin in Galleria mellonella Infected with Candida Yeasts Displaying Different Virulence Traits

  • Jaroslava Dekkerová-Chupáčová
  • Elisa Borghi
  • Giulia Morace
  • Helena BujdákováEmail author
Short Communication


Galleria mellonella has been described as a cheap and an easy-to-reproduce model for the study of fungal infections. We hypothesized that yeasts with higher virulence potential decrease survival and significantly trigger an immune response in G. mellonella through the regulation of innate immunity-related genes encoding antimicrobial peptides (AMPs) such as gallerimycin and galiomicin. Candida albicans SC5314 and Candida dubliniensis CBS 7987, selected because of their different virulence potential, were used for a killing assay followed by the determination of gene expression using qPCR. In vivo results confirmed a significantly (p = 0.0321) lower pathogenicity for C. dubliniensis than for C. albicans. Accordingly, the induction of C. dubliniensis AMPs was lower at all the selected time points post-infection (1 h, 24 h, 48 h). Moreover, we observed an extremely high regulation of the galiomicin gene compared to the gallerimycin one, suggesting a different role of the tested AMPs in protecting G. mellonella from candidiasis.


G. mellonella Gallerimycin Galiomicin Gene expression C. albicans C. dubliniensis 



This work was supported by the Slovak Research and Development Agency under Contract No. [APVV-15-0347 to H.B.] and by the Grant VEGA [1/0628/15 to H.B.] supported by the Ministry of Education, Science, Research and Sport of the Slovak Republic. The authors wish to thank Dr. Stanislava Dižová for help with the qPCR technique.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Fuchs B, O’Brien E, El Khoury JB, Mylonakis E. Methods for using Galleria mellonella as a model host to study fungal pathogenesis. Virulence. 2010;1(6):475–82.CrossRefGoogle Scholar
  2. 2.
    Borghi E, Romagnoli S, Fuchs BB, Cirasola D, Perdoni F, Tosi D, et al. Corrrelation between Candida albicans biofilm formation and invasion of the invertebrate host Galleria mellonella. Future Microbiol. 2014;9:163–73.CrossRefGoogle Scholar
  3. 3.
    Mowlds P, Barron A, Kavanagh K. Physical stress primes the immune response of Galleria mellonella larvae to infection by Candida albicans. Microbes Infect. 2008;10(6):628–32.CrossRefGoogle Scholar
  4. 4.
    Rossoni RD, Fuchs BB, de Barros PP, Velloso MDS, Jorge AOC, Junquiera JC, et al. Lactobacillus paracasei modulates the immune system of Galleria mellonella and protects against Candida albicans infection. PLoS ONE. 2017;12(3):e0173332. Scholar
  5. 5.
    Sheehan G, Kavanagh K. Analysis of the early cellular and humoral responses of Galleria mellonella larvae to infection by Candida albicans. Virulence. 2017;5:1–10.Google Scholar
  6. 6.
    Bergin D, Murphy L, Keenan J, Clynes M, Kavanagh K. Pre-exposure to yeast protects larvae of Galleria mellonella from a subsequent lethal infection by Candida albicans and is mediated by the increased expression of antimicrobial peptides. Microbe Infect. 2006;8(8):2105–12.CrossRefGoogle Scholar
  7. 7.
    Wojda I. immunity of the greater wax moth Galleria mellonella. Insect Sci. 2017;24:342–57.CrossRefGoogle Scholar
  8. 8.
    Schumann B, Seitz V, Vilcinskas A, Podsiadlowski L. Cloning and expression of gallerimycin, an antifungal peptide expressed in immune response of greater wax moth larvae, Galleria mellonella. Arch Insect Biochem Physiol. 2003;53:125–33.CrossRefGoogle Scholar
  9. 9.
    Lee YS, Yun EK, Jang WS, Kim I, Lee JH, Park SY, et al. Purification, cDNA cloning and expression of an insect defensin from the great wax moth, Galleria mellonella. Insect Mol Biol. 2004;13:65–72.CrossRefGoogle Scholar
  10. 10.
    Yang D, Chertov O, Bykovskaia SN, Chen Q, Buffo MJ, Shogan J, et al. Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science. 1999;286:525–8.CrossRefGoogle Scholar
  11. 11.
    Chen X, Niyonsaba F, Ushio H, Hara M, Yokoi H, Matsumoto K, et al. Antimicrobial peptides human beta-defensin (hBD)-3 and hBD-4 active mast cells and increase skin vascular permeability. Eur J Immunol. 2007;37:434–44.CrossRefGoogle Scholar
  12. 12.
    Cobo ER, Chadee K. Antimicrobial human β-defensins in the colon and their role in infectious and non-infectious diseases. Pathogens. 2013;2:177–92.CrossRefGoogle Scholar
  13. 13.
    Moran GP, Coleman DC, Sullivan DJ. Candida albicans versus Candida dubliniensis: why is C. albicans more pathogenic? Int J Microbiol. 2012; Article ID 205921, 7 pp.Google Scholar
  14. 14.
    Gillum AM, Tsay EY, Kirsch DR. Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet. 1984;198(2):179–82.CrossRefGoogle Scholar
  15. 15.
    Sullivan DJ, Westerneng TJ, Havnes KA, Bennett DE, Coleman DC. Candida dubliniensis sp. Nov.: phenotypic and molecular characterization of novel species associated with oral candidosis in HIV-infected individuals. Microbiology. 1995;141(7):1507–21.CrossRefGoogle Scholar
  16. 16.
    Sullivan DJ, Moran GP, Pinjon E, Al-Mosaid A, Stokes C, Vaughan C, et al. Comparison of the epidemiology, drug resistance mechanisms, and virulence of Candida dubliniensis and Candida albicans. FEMS Yeast Res. 2004;4(4–5):369–76.CrossRefGoogle Scholar
  17. 17.
    Ásmundsdóttir LR, Erlendsdóttir H, Agnarsson BA, Gottfredsson M. The importance of strain variation in virulence of Candida dubliniensis and Candida albicans: results of a blinded histopathological study of invasive candidiasis. Clin Microbiol Infect. 2009;15(6):576–85.CrossRefGoogle Scholar
  18. 18.
    Jackson AP, Gamble JA, Yeomans T, Moran GP, Saunders D, Harris D, et al. Comparative genomics of the fungal pathogens Candida dubliniensis and Candida albicans. Genome Res. 2009;19(12):2231–44.CrossRefGoogle Scholar
  19. 19.
    Lehrer RI, Ganz T. Defensins of vertebrate animals. Curr Opin Immunol. 2002;14:96–102.CrossRefGoogle Scholar
  20. 20.
    Brown SE, Howard A, Kasprzak AB, Gordon KH, East PD. A peptidomics study reveals the impressive antimicrobial peptide arsenal of the wax moth Galleria mellonella. Insect Biochem Mol Biol. 2009;39:792–800.CrossRefGoogle Scholar
  21. 21.
    Vogel H, Altincicek B, Glöckner G, Vilcinskas A. A comprehensive transcriptome and immune-gene repertoire of the lepidopteran model host Galleria mellonella. BMC Genomics. 2011;12:308.CrossRefGoogle Scholar
  22. 22.
    Duits LA, Nibbering PH, Van Strijen E, Vos JB, Mannesse-Lazeroms SPG, van Sterkenburg MAJA, et al. Rhinovirus increases human β-defensin-2 and -3 mRNA expression in cultured bronchial epithelial cells. FEMS Immunol Med Microbiol. 2003;38:59–64.CrossRefGoogle Scholar
  23. 23.
    Sukhithasri V, Nisha N, Biswas L, Anil Kumar V, Biswas R. Innate immune recognition of microbial cell wall components and microbial strategies to evade such recognitions. Microbiol Res. 2013;168:396–406.CrossRefGoogle Scholar
  24. 24.
    Wheeler RT, Kombe D, Agarwala SD, Fink GR. Dynamic, morphotype-specific Candida albicans beta-glucan exposure during infection and drug treatment. PLoS Pathog. 2008;4:e1000227.CrossRefGoogle Scholar
  25. 25.
    Svobodová E, Staib P, Losse J, Hennicke F, Barz D, Józsi M. Differential interaction of the two related fungal species Candida albicans and Candida dubliniensis with human neutrophils. J Immunol. 2012;189(5):2502–11.CrossRefGoogle Scholar
  26. 26.
    Chupáčová J, Borghi E, Morace G, Los A, Bujdáková H. Anti-biofilm activity of antibody directed against surface antigen complement receptor 3-related protein-comparison of Candida albicans and Candida dubliniensis. Pathog Dis. 2018;76(1):127. Scholar
  27. 27.
    Dunphy GB, Oberholzer U, Whiteway M, Zakarian RJ, Boomer I. Virulence of Candida albicans mutants toward larval Galleria mellonella (Insecta, Lepidoptera, Galleridae). Can J Microbiol. 2003;49(8):514–24.CrossRefGoogle Scholar
  28. 28.
    Brennan M, Thomas DY, Whiteway M, Kavanagh K. Correlation between virulence of Candida albicans mutants in mice and Galleria mellonella larvae. FEMS Immunol Med Microbiol. 2002;34(2):153–7.CrossRefGoogle Scholar
  29. 29.
    MacCallum DM. Massive induction of innate immune response to Candida albicans in kidney in murine intravenous challenge model. FEMS Yeast Res. 2009;9:1111–22.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Jaroslava Dekkerová-Chupáčová
    • 1
  • Elisa Borghi
    • 2
  • Giulia Morace
    • 2
  • Helena Bujdáková
    • 1
    Email author
  1. 1.Department of Microbiology and Virology, Faculty of Natural SciencesComenius University in BratislavaBratislavaSlovakia
  2. 2.Department of Health Sciences, San Paolo Medical SchoolUniversità degli Studi di MilanoMilanItaly

Personalised recommendations