Advertisement

The Molecular Identification and Antifungal Susceptibilities of Aspergillus Species Causing Otomycosis in Tochigi, Japan

  • Shigehiro Hagiwara
  • Takashi Tamura
  • Kazuo Satoh
  • Hitoshi Kamewada
  • Masayasu Nakano
  • Seiichi Shinden
  • Hideyo Yamaguchi
  • Koichi Makimura
Original Paper
  • 86 Downloads

Abstract

Aspergillus species are the most common pathogenic fungi involved in otomycosis, an infection of the outer ear canal. In this study, we examined the incidence of Aspergillus infections and the antifungal susceptibilities of 30 Aspergillus species isolates from patients with otomycosis who visited Saiseikai Utsunomiya Hospital between August 2013 and July 2016. Based on the morphological test results, the strains were identified as Aspergillus niger sensu lato (20 strains), A. terreus sensu lato (7 strains), and A. fumigatus sensu lato (3 strains). In contrast, the molecular identifications based on analyzing the isolates’ partial β-tubulin gene sequences revealed them to be A. niger sensu stricto (12 strains), A. tubingensis (8 strains), A. terreus sensu stricto (7 strains), and A. fumigatus sensu stricto (3 strains). The antifungal susceptibility test results indicated that strains of A. tubingensis and A. niger sensu stricto displayed lower susceptibilities to ravuconazole, compared with the other isolates. The Aspergillus strains from this study showed low minimum inhibitory concentrations toward the azole-based drugs efinaconazole, lanoconazole, and luliconazole. Therefore, these topical therapeutic agents may be effective for the treatment of otomycosis.

Keywords

Otomycosis Aspergillus species Molecular identification Cryptic species Antifungal susceptibility testing 

Notes

Acknowledgements

We would like to thank our colleagues in our laboratory at Saiseikai Utsunomiya Hospital for their help with this study. We thank Ms. Yoshiko Umeda, Laboratory Space and Environmental Medicine, Teikyo University, for technical assistance. We also thank Lesley Benyon, Ph.D., and Sandra Cheesman, Ph.D., from Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript. This research was partially supported by the Research Program on Emerging and Re-emerging Infectious Diseases from the Japan Agency for Medical Research and development, AMED under Grant Number JP18fk0108008.

Compliance with Ethical Standards

Conflict of interest

The authors alone are responsible for the content of the paper and declare that they have no conflicts of interest to declare.

References

  1. 1.
    Satish HS, Viswanatha B, Manjuladevi M. A clinical study of otomycosis. IOSR J Dent Med Sci. 2013;5(2):2279–0861.CrossRefGoogle Scholar
  2. 2.
    Jia X, Liang Q, Chi F, Cao W. Otomycosis in Shanghai: aetiology, clinical features and therapy. Mycoses. 2012;55:404–9.CrossRefGoogle Scholar
  3. 3.
    Garcia-Agudo L, Aznar-Marin L, Galan-Sanchez F, Garcia-Martos P, Marin-Casanova P, Rodrigues-Iglesias M. Otomycosis due to filamentous fungi. Mycopathologia. 2011;172:307–10.CrossRefGoogle Scholar
  4. 4.
    Fasunla J, Ibekwe T, Onakoya P. Otomycosis in western Nigeria. Mycoses. 2007;51:67–70.Google Scholar
  5. 5.
    Kaya DA, Kiaz N. In vitro susceptibilities of Aspergillus spp. causing otomycosis to amphotericin B, voriconazole and itraconazole. Mycoses. 2007;50:447–50.CrossRefGoogle Scholar
  6. 6.
    Egami T, Noguchi M, Ueda S. Mycosis in the ear, nose and throat. Jpn J Med Mycol. 2003;44:277–83 (in Japanese with English abstract).CrossRefGoogle Scholar
  7. 7.
    Gheith S, Saghrouni F, Bannour W, Youssef YB, Khelif A, Normand AC, Piarroux R, Said MB, Njah M, Ranque S. In vitro susceptibility to amphotericin B, itraconazole, voriconazole, posaconazole and caspofungin of Aspergillus spp. isolated from patients with haematological malignancies in Tunisia. SpringerPlus. 2014;19:1–8.Google Scholar
  8. 8.
    Hendrickx M, Beguin H, Detandt M. Genetic re-identification and antifungal susceptibility testing of Aspergillus section Nigri strains of the BCCM/IHEM collection. Mycoses. 2011;55:148–55.PubMedGoogle Scholar
  9. 9.
    Balajee SA, Kano R, Baddly JW, Moser SA, Marr KA, Alexander BD, Andes D, Kontoyiannis DP, Perrone G, Peterson S, Brandt ME, Pappas PG, Chiller T. Molecular identification of Aspergillus species collected for the Transplant-Associated Infection Surveillance Network. J Clin Microbiol. 2009;47:3138–41.CrossRefGoogle Scholar
  10. 10.
    Alcazar-Fuoli L, Mellado E, Alastruey-Izquierdo A, Cuenca-Estrella M, Rordriguez-Tudela JL. Species identification and antifungal susceptibility patterns of species belonging to Aspergillus section Nigri. Antimicrob Agents Chemother. 2009;53:4514–7.CrossRefGoogle Scholar
  11. 11.
    Alastruey-Lzquierdo A, Mellado E, Pelaez T, Peman J, Zapico S, Alvarez M, Rodriguez-Tudela J, Cuenca-Estrella M. Population-based survey of filamentous fungi and antifungal resistance in Spain (FILPOP study). Antimicrob Agents Chemother. 2013;57:3380–7.CrossRefGoogle Scholar
  12. 12.
    Li Y, Wan Z, Liu W, Li R. Identification and susceptibility of Aspergillus section nigri in China: prevalence of species and paradoxical growth in response to echinocandins. J Clin Microbiol. 2015;53:702–5.CrossRefGoogle Scholar
  13. 13.
    Gautier M, Normand AC, L’Ollivier C, Cassagne C, Reynaud-Gaubert M, Dubus JD, Bregeon F, Hendrickx M, Gomez C, Ranque S, Piarroux R. Aspergillus tubingensis: a major filamentous fungus found in the airways of patients with lung disease. Med Mycol. 2016;54:459–70.CrossRefGoogle Scholar
  14. 14.
    Szigeti G, Kocsube S, Doczi I, Bereczki L, Vagvolgy C, Varga J. Molecular identification and antifungal susceptibilities of black Aspergillus isolates from otomycosis cases in Hungary. Mycopathologia. 2012;174:143–7.CrossRefGoogle Scholar
  15. 15.
    Szigeti G, Sedaghati E, Mahmoudabadi AZ, Naseri A, Kocsube S, Vagvolgyi C, Varga J. Species assignment and antifungal susceptibilities of black aspergilli recovered from otomycosis cases in Iran. Mycoses. 2012;55:333–8.CrossRefGoogle Scholar
  16. 16.
    Alcazar-Fuoli L, Mellado E, Alastruey-Izquierdo A, Cuenca-Estrella M, Rodriguez-Tudela JL. Aspergillus section Fumigati: antifungal Susceptibility Patterns and sequence-based identification. Antimicrob Agents Chemother. 2008;52(4):1244–51.CrossRefGoogle Scholar
  17. 17.
    Anwar K, Gohar MS. Otomycosis; clinical features, predisposing factors and treatment implications. Pak J Med Sci. 2014;30(3):564–7.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Siu WJJ, Tatsumi Y, Senda H, Pillai R, Nakamura T, Sone D, Fothergill A. Comparison of in vitro antifungal activities of efinaconazole and currently available antifungal agents against a variety of pathogenic fungi associated with onychomycosis. Antimicrob Agents Chemother. 2013;57:1610–6.CrossRefGoogle Scholar
  19. 19.
    Tupaki-Sreepurna A, Jishnu BT, Thanneru V, Sharma S, Gopi A, Sundaram M, Kindo AJ. An assessment of in vitro antifungal activities of efinaconazole and itraconazole against common non-dermatophyte fungi causing onychomycosis. J Fungi. 2017;20:1–8.Google Scholar
  20. 20.
    De Hoog GS, Guarro J, Gene J, Figueras MJ. Atlas of clinical fungi, 2nd edn. Washington: American Society for Microbiology; 2014. p. 442–3.Google Scholar
  21. 21.
    Makimura K, Tamura Y, Mochizuki T, Hasegawa A, Tajiri Y, Hanzawa R, Uchida K, Saito H, Yamaguchi H. Phylogenetic classification of dermatophyte strains based on DNA sequences of nuclear ribosomal internal transcribed spacer 1 regions. J Clin Microbiol. 1999;37:920–4.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Satoh K, Yamazaki T, Nakayama T, Umeda Y, Alshahni MM, Makimura M, Makimura K. Characterization of fungi isolated from the equipment used in the International Space Station or Space Shuttle. Microbiol Immunol. 2016;60:295–302.CrossRefGoogle Scholar
  23. 23.
    Clinical and Laboratory Standards Institute. M38-A2 Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi; Approved Standard. 2nd edn; 2008. Vol. 28 No. 16.Google Scholar
  24. 24.
    Ishidaira H, Hoshi S, Nagai K, Tamura Y, Takano M, Sakai T. Epidemiological study of the isolation of Aspergillus species from 2000 to 2011 at Nagaoka Red Cross Hospital. Igakukensa. 2014;63:486–91 (in Japanese with English abstract).Google Scholar
  25. 25.
    Barati B, Okhovvat SAR, Goljanian A, Omrani MR. Otomycosis in central Iran: a clinical and mycological study. Iran Red Crescent Med J. 2011;13:873–6.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Viswanatha B, Sumatha D, Vijayashree MS. Otomycosis in immunocompetent and immunocompromised patients: comparative study and literature review. Ear Nose Throat J. 2012;91:114–20.PubMedGoogle Scholar
  27. 27.
    Kathuria S, Shashta C, Singh PK, Agarwal P, Agarwal K, Hagen F, Meis JF, Chowdhary A. Molecular epidemiology and in vitro antifungal susceptibility of Aspergillus terreus species complex isolates in Delhi, India: evidence of genetic diversity by amplified fragment length polymorphism and microsatellite typing. PLoS ONE. 2015;10:1–17.CrossRefGoogle Scholar
  28. 28.
    Pfaller MA, Merrer SA, Hollis RJ, Jones RN. Sentry participants group antifungal activities of posaconazole, ravuconazole, and voriconazole compared to those of itraconazole and amphotericin B against 239 clinical isolates of Aspergillus spp. and other filamentous fungi: report from SENTRY antimicrobial surveillance program, 2000. Antimicrob Agents Chemother. 2002;46:1032–7.CrossRefGoogle Scholar
  29. 29.
    Cuenca-Estrella M, Gomez-Lopez A, Mellado E, Garcia-Effron G, Monzon A, Rodriguez-Tudela JL. In vitro activity of ravuconazole against 923 clinical isolates of nondermatophyte filamentous fungi. Antimicrob Agents Chemother. 2005;49:5136–8.CrossRefGoogle Scholar
  30. 30.
    Hiratani T, Uchida K, Yamaguchi H, Oka H, Niwano Y, Ohmi T, Uchida M. In vitro antifungal activity of NND-318, a new antimycotic. Jpn J Med Mycol. 1992;33:321–8 (in Japanese with English abstract).CrossRefGoogle Scholar
  31. 31.
    Uchida K, Nichiyama Y, Yamaguchi H. In vitro antifungal activity of luliconazole (NND-502), a novel imidazole antifungal agent. J Infect Chemother. 2004;10:216–9.CrossRefGoogle Scholar
  32. 32.
    Abastabar M, Rahimi N, Meis JF, Aslani N, Khodavaisy S, Nabili M, Rezaei-Matehkolaei A, Makimura K, Badali H. Potent activities of novel imidazoles lanoconazole and luliconazole against a collection of azole-resistant and susceptible Aspergillus fumigatus strains. Antimicrob Agents Chemother. 2016;60:6916–9.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Shigehiro Hagiwara
    • 1
    • 2
  • Takashi Tamura
    • 4
    • 5
  • Kazuo Satoh
    • 4
    • 5
  • Hitoshi Kamewada
    • 2
  • Masayasu Nakano
    • 6
  • Seiichi Shinden
    • 7
  • Hideyo Yamaguchi
    • 5
  • Koichi Makimura
    • 1
    • 3
    • 4
    • 5
  1. 1.Graduate School of Medical TechnologyTeikyo UniversityTokyoJapan
  2. 2.Department of Clinical LaboratorySaiseikai Utsunomiya HospitalUtsunomiyaJapan
  3. 3.Medical Mycology Research Unit, Graduate School of MedicineTeikyo UniversityTokyoJapan
  4. 4.General Medical Education and Research CenterTeikyo UniversityTokyoJapan
  5. 5.Teikyo University Institute of Medical MycologyTokyoJapan
  6. 6.Department of Laboratory MedicineSaiseikai Utsunomiya HospitalUtsunomiyaJapan
  7. 7.Department of OtorhinolaryngologySaiseikai Utsunomiya HospitalUtsunomiyaJapan

Personalised recommendations