Advertisement

Mycopathologia

, Volume 183, Issue 1, pp 101–117 | Cite as

Toward the Standardization of Mycological Examination of Sputum Samples in Cystic Fibrosis: Results from a French Multicenter Prospective Study

  • Noémie Coron
  • Marc Pihet
  • Emilie Fréalle
  • Yolande Lemeille
  • Claudine Pinel
  • Hervé Pelloux
  • Gilles Gargala
  • Loic Favennec
  • Isabelle Accoceberry
  • Isabelle Durand-Joly
  • Frédéric Dalle
  • Frédéric Huet
  • Annlyse Fanton
  • Amale Boldron
  • Guy-André Loeuille
  • Philippe Domblides
  • Bérengère Coltey
  • Isabelle Pin
  • Catherine Llerena
  • Françoise Troussier
  • Christine Person
  • Christophe Marguet
  • Nathalie Wizla
  • Caroline Thumerelle
  • Dominique Turck
  • Stéphanie Bui
  • Michael Fayon
  • Alain Duhamel
  • Anne Prévotat
  • Benoit Wallaert
  • Sylvie Leroy
  • Jean-Philippe Bouchara
  • Laurence Delhaes
Article

Abstract

Fungal respiratory colonization of cystic fibrosis (CF) patients emerges as a new concern; however, the heterogeneity of mycological protocols limits investigations. We first aimed at setting up an efficient standardized protocol for mycological analysis of CF sputa that was assessed during a prospective, multicenter study: “MucoFong” program (PHRC-06/1902). Sputa from 243 CF patients from seven centers in France were collected over a 15-month period and submitted to a standardized protocol based on 6 semi-selective media. After mucolytic pretreatment, sputa were plated in parallel on cycloheximide-enriched (ACT37), erythritol-enriched (ERY37), benomyl dichloran–rose bengal (BENO37) and chromogenic (CAN37) media incubated at 37 °C and on Sabouraud–chloramphenicol (SAB27) and erythritol-enriched (ERY27) media incubated at 20–27 °C. Each plate was checked twice a week during 3 weeks. Fungi were conventionally identified; time for detection of fungal growth was noted for each species. Fungal prevalences and media performances were assessed; an optimal combination of media was determined using the Chi-squared automatic interaction detector method. At least one fungal species was isolated from 81% of sputa. Candida albicans was the most prevalent species (58.8%), followed by Aspergillus fumigatus (35.4%). Cultivation on CAN37, SAB27, ACT37 and ERY27 during 16 days provided an optimal combination, detecting C. albicans, A. fumigatus, Scedosporium apiospermum complex and Exophiala spp. with sensitivities of 96.5, 98.8, 100 and 100%. Combination of these four culture media is recommended to ensure the growth of key fungal pathogens in CF respiratory specimens. The use of such consensual protocol is of major interest for merging results from future epidemiological studies.

Keywords

Cystic fibrosis Molds Aspergillus Filamentous fungi Mycological examination Lung mycobiota 

Notes

Acknowledgements

L. Delhaes has received research grants from the French Ministry of Health and Research (PHRC N°2006/1902), Lille Hospital, the association “Vaincre la Mucoviscidose” (Defeat Cystic Fibrosis) (MucoFong and Mucofong-ATF N8 2006/351) and the Pharmaceutical Division of Pfizer France (Nu 2006/158). The authors would like to thank Arnaud Hautecoeur for his assistance in organizing the data set.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Cystic Fibrosis Foundation Patient Registry Annual Report 2015. [cited 2016 Nov 18]. https://www.cff.org/Our-Research/CF-Patient-Registry/2015-Patient-Registry-Annual-Data-Report.pdf.
  2. 2.
    European Cystic Fibrosis Society Patient Registry Annual Report 2014. [cited 2017 Jan 22]. https://www.ecfs.eu/sites/default/files/images/ECFSPR_Annual%20Report%202014_Nov2016.pdf.
  3. 3.
    Touati K, Nguyen DNL, Delhaes L. The airway colonization by opportunistic filamentous fungi in patients with cystic fibrosis: recent updates. Curr Fungal Infect Rep. 2014;8:302–11.CrossRefGoogle Scholar
  4. 4.
    Rowe SM, Miller S, Sorscher EJ. Cystic fibrosis. N Engl J Med. 2005;352:1992–2001.CrossRefPubMedGoogle Scholar
  5. 5.
    Pihet M, Carrère J, Cimon B, et al. Occurrence and relevance of filamentous fungi in respiratory secretions of patients with cystic fibrosis—a review. Med Mycol. 2009;47:387–97.CrossRefPubMedGoogle Scholar
  6. 6.
    Sudfeld CR, Dasenbrook EC, Merz WG, Carroll KC, Boyle MP. Prevalence and risk factors for recovery of filamentous fungi in individuals with cystic fibrosis. J Cyst Fibros. 2010;9:110–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Luong ML, Chaparro C, Stephenson A, et al. Pretransplant Aspergillus colonization of cystic fibrosis patients and the incidence of post-lung transplant invasive aspergillosis. Transplantation. 2014;97:351–7.CrossRefPubMedGoogle Scholar
  8. 8.
    Symoens F, Knoop C, Schrooyen M, et al. Disseminated Scedosporium apiospermum infection in a cystic fibrosis patient after double-lung transplantation. J Heart Lung Transplant. 2006;25:603–7.CrossRefPubMedGoogle Scholar
  9. 9.
    Chotirmall SH, O’Donoghue E, Bennett K, et al. Sputum Candida albicans presages FEV1 decline and hospital-treated exacerbations in cystic fibrosis. Chest. 2010;138:1186–95.CrossRefPubMedGoogle Scholar
  10. 10.
    Amin R, Dupuis A, Aaron SD, Ratjen F. The effect of chronic infection with Aspergillus fumigatus on lung function and hospitalization in patients with cystic fibrosis. Chest. 2010;137:171–6.CrossRefPubMedGoogle Scholar
  11. 11.
    de Vrankrijker AMM, van der Ent CK, van Berkhout FT, et al. Aspergillus fumigatus colonization in cystic fibrosis: implications for lung function? Clin Microbiol Infect. 2011;17:1381–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Kondori N, Gilljam M, Lindblad A, et al. High rate of Exophiala dermatitidis recovery in the airways of patients with cystic fibrosis is associated with pancreatic insufficiency. J Clin Microbiol. 2011;49:1004–9.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Aaron SD, Vandemheen KL, Freitag A, et al. Treatment of Aspergillus fumigatus in patients with cystic fibrosis: a randomized, placebo-controlled pilot study. PLoS ONE. 2012;7:e36077.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Saunders RV, Modha DE, Claydon A, Gaillard EA. Chronic Aspergillus fumigatus colonization of the pediatric cystic fibrosis airway is common and may be associated with a more rapid decline in lung function. Med Mycol. 2016;54:537–43.CrossRefPubMedGoogle Scholar
  15. 15.
    Fillaux J, Brémont F, Murris M, et al. Assessment of Aspergillus sensitization or persistent carriage as a factor in lung function impairment in cystic fibrosis patients. Scand J Infect Dis. 2012;44:842–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Borman AM, Palmer MD, Delhaes L, et al. Lack of standardization in the procedures for mycological examination of sputum samples from CF patients: a possible cause for variations in the prevalence of filamentous fungi. Med Mycol. 2010;48(Suppl 1):S88–97.CrossRefPubMedGoogle Scholar
  17. 17.
    Liu JC, Modha DE, Gaillard EA. What is the clinical significance of filamentous fungi positive sputum cultures in patients with cystic fibrosis? J Cyst Fibros. 2013;12:187–93.CrossRefPubMedGoogle Scholar
  18. 18.
    Blyth CC, Harun A, Middleton PG, et al. Detection of occult Scedosporium species in respiratory tract specimens from patients with cystic fibrosis by use of selective media. J Clin Microbiol. 2010;48:314–6.CrossRefPubMedGoogle Scholar
  19. 19.
    Delhaes L, Monchy S, Fréalle E, et al. The airway microbiota in cystic fibrosis: a complex fungal and bacterial community—implications for therapeutic management. PLoS ONE. 2012;7:e36313.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Rosenstein BJ, Cutting GR. The diagnosis of cystic fibrosis: a consensus statement. Cystic Fibrosis Foundation Consensus Panel. J Pediatr. 1998;132:589–95.CrossRefPubMedGoogle Scholar
  21. 21.
    Pashley CH, Fairs A, Morley JP, et al. Routine processing procedures for isolating filamentous fungi from respiratory sputum samples may underestimate fungal prevalence. Med Mycol. 2012;50:433–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Rainer J, Kaltseis J, de Hoog SG, Summerbell RC. Efficacy of a selective isolation procedure for members of the Pseudallescheria boydii complex. Antonie Van Leeuwenhoek. 2007;93:315–22.CrossRefPubMedGoogle Scholar
  23. 23.
    Moles DR, Bedi R. A simple technique for data management in general dental practice audit. Prim Dent Care. 1997;4:61–5.PubMedGoogle Scholar
  24. 24.
    Song Y, Lu Y. Decision tree methods: applications for classification and prediction. Shanghai Arch Psychiatry. 2015;27:130–5.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Nagano Y, Elborn JS, Millar BC, et al. Comparison of techniques to examine the diversity of fungi in adult patients with cystic fibrosis. Med Mycol. 2010;48:166–76.CrossRefPubMedGoogle Scholar
  26. 26.
    Güngör O, Tamay Z, Güler N, Erturan Z. Frequency of fungi in respiratory samples from Turkish cystic fibrosis patients. Mycoses. 2013;56:123–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Mortensen KL, Jensen RH, Johansen HK, et al. Aspergillus species and other molds in respiratory samples from patients with cystic fibrosis: a laboratory-based study with focus on Aspergillus fumigatus azole resistance. J Clin Microbiol. 2011;49:2243–51.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Paugam A, Baixench MT, Demazes-Dufeu N, et al. Characteristics and consequences of airway colonization by filamentous fungi in 201 adult patients with cystic fibrosis in France. Med Mycol. 2010;48(Suppl 1):S32–6.CrossRefPubMedGoogle Scholar
  29. 29.
    Valenza G, Tappe D, Turnwald D, et al. Prevalence and antimicrobial susceptibility of microorganisms isolated from sputa of patients with cystic fibrosis. J Cyst Fibros. 2008;7:123–7.CrossRefPubMedGoogle Scholar
  30. 30.
    Masoud-Landgraf L, Badura A, Eber E, et al. Modified culture method detects a high diversity of fungal species in cystic fibrosis patients. Med Mycol. 2014;52:179–86.PubMedGoogle Scholar
  31. 31.
    Nielsen SM, Kristensen L, Søndergaard A, et al. Increased prevalence and altered species composition of filamentous fungi in respiratory specimens from cystic fibrosis patients. APMIS. 2014;122:1007–12.CrossRefPubMedGoogle Scholar
  32. 32.
    Ren CL, Pasta DJ, Rasouliyan L, et al. Relationship between inhaled corticosteroid therapy and rate of lung function decline in children with cystic fibrosis. J Pediatr. 2008;153:746–51.CrossRefPubMedGoogle Scholar
  33. 33.
    Burgel PR, Paugam A, Hubert D, Martin C. Aspergillus fumigatus in the cystic fibrosis lung: pros and cons of azole therapy. Infect Drug Resist. 2016;9:229–38.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Chotirmall SH, McElvaney NG. Fungi in the cystic fibrosis lung: bystanders or pathogens? Int J Biochem Cell Biol. 2014;52:161–73.CrossRefPubMedGoogle Scholar
  35. 35.
    Whiteson KL, Bailey B, Bergkessel M, et al. The upper respiratory tract as a microbial source for pulmonary infections in cystic fibrosis. Parallels from island biogeography. Am J Respir Crit Care Med. 2014;189:1309–15.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Nagano Y, Millar BC, Goldsmith CE, et al. Development of selective media for the isolation of yeasts and filamentous fungi from the sputum of adult patients with cystic fibrosis (CF). J Cyst Fibros. 2008;7:566–72.CrossRefPubMedGoogle Scholar
  37. 37.
    Kerr J. Inhibition of fungal growth by Pseudomonas aeruginosa and Pseudomonas cepacia isolated from patients with cystic fibrosis. J Infect. 1994;28:305–10.CrossRefPubMedGoogle Scholar
  38. 38.
    Horré R, Marklein G, Siekmeier R, Nidermajer S, Reiffert SM. Selective isolation of Pseudallescheria and Scedosporium species from respiratory tract specimens of cystic fibrosis patients. Respiration. 2009;77:320–4.CrossRefPubMedGoogle Scholar
  39. 39.
    Cortez KJ, Roilides E, Quiroz-Telles F, et al. Infections caused by Scedosporium spp. Clin Microbiol Rev. 2008;21:157–97.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Horré R, Marklein G, Siekmeier R, Reiffert S-M. Detection of hyphomycetes in the upper respiratory tract of patients with cystic fibrosis. Mycoses. 2011;54:514–22.CrossRefPubMedGoogle Scholar
  41. 41.
    Lebecque P, Leonard A, Huang D, et al. Exophiala (Wangiella) dermatitidis and cystic fibrosis—prevalence and risk factors. Med Mycol. 2010;48(Suppl 1):S4–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Cimon B, Carrère J, Chazalette JP, et al. Fungal colonization and immune response to fungi in cystic fibrosis. J Mycol Méd. 1995;5:211–6.Google Scholar
  43. 43.
    Bakare N, Rickerts V, Bargon J, Just-Nübling G. Prevalence of Aspergillus fumigatus and other fungal species in the sputum of adult patients with cystic fibrosis. Mycoses. 2003;46:19–23.CrossRefPubMedGoogle Scholar
  44. 44.
    Fischer J, van Koningsbruggen-Rietschel S, Rietschel E, et al. Prevalence and molecular characterization of azole resistance in Aspergillus spp. isolates from German cystic fibrosis patients. J Antimicrob Chemother. 2014;69:1533–6.CrossRefPubMedGoogle Scholar
  45. 45.
    Baxter CG, Dunn G, Jones AM, et al. Novel immunologic classification of aspergillosis in adult cystic fibrosis. J Allergy Clin Immunol. 2013;132(560–566):e10.Google Scholar
  46. 46.
    Rougeron A, Giraud S, Razafimandimby B, et al. Different colonization patterns of Aspergillus terreus in patients with cystic fibrosis. Clin Microbiol Infect. 2014;20:327–33.CrossRefPubMedGoogle Scholar
  47. 47.
    Cimon B, Carrère J, Vinatier JF, et al. Clinical significance of Scedosporium apiospermum in patients with cystic fibrosis. Eur J Clin Microbiol Infect Dis. 2000;19:53–6.CrossRefPubMedGoogle Scholar
  48. 48.
    Russell GK, Gadhok R, Simmonds NJ. The destructive combination of Scedosporium apiospermum lung disease and exuberant inflammation in cystic fibrosis. Paediatr Respir Rev. 2013;14(Suppl 1):22–5.CrossRefPubMedGoogle Scholar
  49. 49.
    Guarro J, Kantarcioglu AS, Horré R, et al. Scedosporium apiospermum: changing clinical spectrum of a therapy-refractory opportunist. Med Mycol. 2006;44:295–327.CrossRefPubMedGoogle Scholar
  50. 50.
    Rodriguez-Tudela JL, Berenguer J, Guarro J, et al. Epidemiology and outcome of Scedosporium prolificans infection, a review of 162 cases. Med Mycol. 2009;47:359–70.CrossRefPubMedGoogle Scholar
  51. 51.
    Muthig M, Hebestreit A, Ziegler U, Seidler M. Müller F-MC. Persistence of Candida species in the respiratory tract of cystic fibrosis patients. Med Mycol. 2010;48:56–63.CrossRefPubMedGoogle Scholar
  52. 52.
    LiPuma JJ. The changing microbial epidemiology in cystic fibrosis. Clin Microbiol Rev. 2010;23:299–323.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Chotirmall SH, Greene CM, McElvaney NG. Candida species in cystic fibrosis: a road less travelled. Med Mycol. 2010;48(Suppl 1):S114–24.CrossRefPubMedGoogle Scholar
  54. 54.
    Packeu A, Lebecque P, Rodriguez-Villalobos H, et al. Molecular typing and antifungal susceptibility of Exophiala isolates from patients with cystic fibrosis. J Med Microbiol. 2012;61:1226–33.CrossRefPubMedGoogle Scholar
  55. 55.
    Kondori N, Lindblad A, Welinder-Olsson C, Wennerås C, Gilljam M. Development of IgG antibodies to Exophiala dermatitidis is associated with inflammatory responses in patients with cystic fibrosis. J Cyst Fibros. 2014;13:391–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Noémie Coron
    • 1
    • 20
  • Marc Pihet
    • 1
  • Emilie Fréalle
    • 2
  • Yolande Lemeille
    • 3
  • Claudine Pinel
    • 3
  • Hervé Pelloux
    • 3
  • Gilles Gargala
    • 4
  • Loic Favennec
    • 4
  • Isabelle Accoceberry
    • 5
  • Isabelle Durand-Joly
    • 6
  • Frédéric Dalle
    • 7
  • Frédéric Huet
    • 8
  • Annlyse Fanton
    • 8
  • Amale Boldron
    • 9
  • Guy-André Loeuille
    • 9
  • Philippe Domblides
    • 10
  • Bérengère Coltey
    • 11
  • Isabelle Pin
    • 12
  • Catherine Llerena
    • 12
  • Françoise Troussier
    • 13
  • Christine Person
    • 13
  • Christophe Marguet
    • 14
  • Nathalie Wizla
    • 15
  • Caroline Thumerelle
    • 15
  • Dominique Turck
    • 15
  • Stéphanie Bui
    • 16
  • Michael Fayon
    • 16
  • Alain Duhamel
    • 17
  • Anne Prévotat
    • 18
  • Benoit Wallaert
    • 18
  • Sylvie Leroy
    • 18
    • 19
  • Jean-Philippe Bouchara
    • 1
  • Laurence Delhaes
    • 2
    • 20
  1. 1.Laboratoire de Parasitologie-MycologieCentre Hospitalier UniversitaireAngersFrance
  2. 2.Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire de LilleUniversité de Lille 2LilleFrance
  3. 3.Service de Parasitologie-Mycologie, Pôle de Biologie et Pathologie, CHU Grenoble-AlpesUniversité Grenoble AlpesGrenobleFrance
  4. 4.Laboratoire de Parasitologie-MycologieCentre Hospitalier Universitaire Charles NicolleRouenFrance
  5. 5.Laboratoire de Parasitologie-Mycologie, Centre Hospitalier UniversitaireUniversité de BordeauxBordeauxFrance
  6. 6.Hygiène hospitalièreCentre Hospitalier de DunkerqueDunkerqueFrance
  7. 7.Laboratoire de Parasitologie-Mycologie, Service Microbiologie Agents TransmissiblesCentre Hospitalier UniversitaireDijonFrance
  8. 8.CRCM mixte, Hôpital d’EnfantsCentre Hospitalier UniversitaireDijonFrance
  9. 9.CRCMCentre Hospitalier de DunkerqueDunkerqueFrance
  10. 10.CRCM AdulteCentre Hospitalier UniversitaireBordeauxFrance
  11. 11.CRCM AdulteCentre Hospitalier UniversitaireGrenobleFrance
  12. 12.Pédiatrie, Centre Hospitalier Universitaire de Grenoble AlpesGrenobleFrance
  13. 13.CRCM mixteCentre Hospitalier UniversitaireAngersFrance
  14. 14.CRCM mixte, Normandie Univ, UNIROUEN, EA2656/Inserm U1404, département de PediatrieCentre Hospitalier Universitaire de RouenRouenFrance
  15. 15.CRCM de pédiatrie, Centre Hospitalier Universitaire de LilleUniversité de Lille 2LilleFrance
  16. 16.CRCM de pédiatrie, CIC 1401, Centre Hospitalier Universitaire de BordeauxUniversité de BordeauxBordeauxFrance
  17. 17.CERIM, EA2694Faculté de MédecineLilleFrance
  18. 18.CRCM adulte, Centre Hospitalier Universitaire de LilleUniversité de Lille 2LilleFrance
  19. 19.Centre Hospitalier Universitaire de Nice - Hôpital PasteurNiceFrance
  20. 20.Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire, INSERM U1045Université de BordeauxBordeauxFrance

Personalised recommendations