, Volume 182, Issue 3–4, pp 349–363 | Cite as

Intestinal Dysbiosis and Yeast Isolation in Stool of Subjects with Autism Spectrum Disorders

  • Maria Rosaria Iovene
  • Francesca Bombace
  • Roberta Maresca
  • Anna Sapone
  • Patrizia Iardino
  • Annarita Picardi
  • Rosa Marotta
  • Chiara Schiraldi
  • Dario Siniscalco
  • Nicola Serra
  • Laura de MagistrisEmail author
  • Carmela Bravaccio


High frequency of gastrointestinal yeast presence in ASD subjects was shown through a simple cultural approach (Candida spp. in 57.5 % of ASDs and no controls); the identification of aggressive form (pseudo-hyphae presenting) of Candida spp. at light microscope means that adhesion to intestinal mucosa is facilitated. Dysbiosis appears sustained by lowered Lactobacillus spp. and decreased number of Clostridium spp. Absence of C. difficilis and its toxins in both ASDs and controls is also shown. Low-mild gut inflammation and augmented intestinal permeability were demonstrated together with the presence of GI symptoms. Significant linear correlation was found between disease severity (CARs score) and calprotectin and Clostridium spp. presence. Also GI symptoms, such as constipation and alternating bowel, did correlate (multivariate analyses) with the increased permeability to lactulose. The present data provide rationale basis to a possible specific therapeutic intervention in restoring gut homeostasis in ASDs.


Autism Gastrointestinal dysbiosis Microbiota Candida Intestinal permeability 



This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.


  1. 1.
    Adams JB, Johansen LJ, Powell LD, Quig D, Rubin RA. Gastrointestinal flora and gastrointestinal status in children with autism–comparisons to typical children and correlation with autism severity. BMC Gastroenterol. 2011;16:11–22.Google Scholar
  2. 2.
    American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington: American Psychiatric Association; 2013.CrossRefGoogle Scholar
  3. 3.
    Angelidou A, Francio K, Vasiadi M, et al. Neurotensin is increased in serum of young children with autistic disorder. J Neuroinflamm. 2010;7:48. doi: 10.1186/1742-2094-7-48.CrossRefGoogle Scholar
  4. 4.
    Ashwood P, Wakefield AJ. Immune activation of peripheral blood and mucosal CD3+ lymphocyte cytokine profiles in children with autism and gastrointestinal symptoms. J Neuroimmunol. 2006;173:126–34.CrossRefPubMedGoogle Scholar
  5. 5.
    Berni Canani R, Rapacciuolo L, Romano MT, et al. Diagnostic value of faecal calprotectin in paediatric gastroenterology clinical practice. Dig Liver Dis. 2004;36:467–70.CrossRefPubMedGoogle Scholar
  6. 6.
    Bradstreet JJ, Vogelaar M, Thyer L. Initial observations of elevated alpha-acetylgalactosaminidase activity associated with autism and observed reductions from GC protein—macrophage activating factor injections. Autism Insights. 2012;4:31–8.CrossRefGoogle Scholar
  7. 7.
    Buie T, Campbell DB, Fuchs GJ III, et al. Evaluation, diagnosis, and treatment of gastrointestinal disorders in individuals with ASDs: a consensus report. Pediatrics. 2010;125:S1–18.CrossRefPubMedGoogle Scholar
  8. 8.
    Buonavolontà R, Boccia G, Turco R, Quitadamo P, Russo D, Staiano A. Pediatric functional gastrointestinal disorders: a questionnaire on pediatric gastrointestinal symptoms based on Rome III criteria. Minerva Pediatr. 2009;61:67–91.PubMedGoogle Scholar
  9. 9.
    Burrus CJ. A biochemical rationale for the interaction between gastrointestinal yeast and autism. Med Hypotheses. 2012;79:784–5.CrossRefPubMedGoogle Scholar
  10. 10.
    Campbell DB, Sutcliffe JS, Ebert PJ, Militerni R, Bravaccio C, Trillo S, et al. Agenetic variant that disrupts MET transcription is associated with autism. Proc Natl Acad Sci USA. 2006;103:16834–9.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Chauhan A, Audhya T, Chauhan V. Brain region-specific glutathione redox imbalance in autism. Neurochem Res. 2012;37:1681–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Coury DL, Ashwood P, Fasano A, Fuchs G, Geraghty M, Kaul A, Mawe G, Patterson P, Jones NE. Gastrointestinal conditions in children with autism spectrum disorder: developing a research agenda. Pediatrics. 2012;130:S160–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Cozzolino R, deMagistris L, Saggese P, Stocchero M, Martignetti A, DiStasio M, Malorni A, Marotta R, Boscaino F, Malorni L. Use of solid-phase microextraction coupled to gas chromatography-mass spectrometry for determination of urinary volatile organic compounds in autistic children compared with healthy controls. Anal Bioanal Chem. 2014;406:4649–62.CrossRefPubMedGoogle Scholar
  14. 14.
    Critchfield JW, van Hemert S, et al. The potential role of probiotics in the management of childhood autism spectrum disorders. Gastroenterol Res Pract. 2011;. doi: 10.1155/2011/161358.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Crumeyrolle-Arias M, Jaglin M, et al. Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats. Psychoneuroendocrinology. 2014;42:207–17.CrossRefPubMedGoogle Scholar
  16. 16.
    DeAngelis M, Piccolo M, Vannini L, et al. Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PLoS One. 2013;8:e76993.CrossRefGoogle Scholar
  17. 17.
    deMagistris L, Familiari V, Pascotto A, Sapone A, Frolli A, Iardino P, Carteni M, DeRosa M, Francavilla R, Riegler G, Militerni R, Bravaccio C. Alterations of the intestinal barrier in patients with autism spectrum disorders and in their first-degree relatives. J Pediatr Gastroenterol Nutr. 2010;51:418–24.CrossRefGoogle Scholar
  18. 18.
    deMagistris L, Picardi A, Siniscalco D, Riccio MP, Sapone A, Cariello R, Abbadessa S, Medici N, Lammers KM, Schiraldi C, Iardino P, Marotta R, Tolone C, Fasano A, Pascotto A, Bravaccio C. Antibodies against food antigens in patients with autistic spectrum disorders (ASDs). Biomed Res Int. 2013;. doi: 10.1155/2013/729349.Google Scholar
  19. 19.
    DeMagistris L, Siniscalco D, Bravaccio C, Loguercio C. Gut-brain axis: a new revolution to understand the pathogenesis of autism and other severe neurological diseases. In: Grossi E, Pace F, editors. Human Nutrition from the Gastroenterologist’s perspective, chapter 4. Dordrecht: Springer; 2016. p. 49–65.Google Scholar
  20. 20.
    de Theije CG, Wu J, da Silva SL, et al. Pathways underlying the gut-to-brain connection in autism spectrum disorders as future targets for disease management. Eur J Pharmacol. 2011;668:S70–80.CrossRefPubMedGoogle Scholar
  21. 21.
    Ekiel A, Aptekorz M, Kazek B, Wlechula B, Wilk I, Martirosian G. Intestinal microflora of autistic children. Med Dosw Mikrobiol. 2010;62:237–43.PubMedGoogle Scholar
  22. 22.
    Fernell E, Fagerberg UL, Hellstrom PM. No evidence for a clear link between active intestinal inflammation and autism based on analyses of fecal calprotectin and rectal nitric oxide. Acta Pediatr. 2007;96:1076–9.CrossRefGoogle Scholar
  23. 23.
    Finegold SM, Molitoris D, et al. Gastrointestinal microflora studies in late onset autism. Clin Infect Dis. 2002;35:S6–16.CrossRefPubMedGoogle Scholar
  24. 24.
    Finegold SM, Dowd SE, Gontcharova V, et al. Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe. 2010;16:444–53.CrossRefPubMedGoogle Scholar
  25. 25.
    Finegold SM. State of the art; microbiology in health and disease. Intestinal bacterial flora in autism. Anaerobe. 2011;17:367–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Frykman PK, Nordenskjold A, Kawaguchi A, Hui TT, Granstrom AL, Cheng Z, Tang J, Underhill DM, Iliev I, Funari VA, Wester T. Characterization of bacterial and fungal microbiome in children with Hirschsprung disease with and without a history of enterocolitis. PLoS One. 2015;10:e0124172.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Gabriele S, Sacco R, Altieri L, Neri C, Urbani A, Bravaccio C, Riccio MP, Iovene MR, Bombace F, deMagistris L, Persico AM. Slow intestinal transit contributes to elevate urinary p-cresol level in Italian autistic children. Autism Res. 2015;. doi: 10.1002/aur.1571.PubMedGoogle Scholar
  28. 28.
    Galiatsatos P, Gologan A, Lamoureux E. Autistic enterocolitis: fact or fiction? Can J Gastroenterol. 2009;23:95–8.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Generoso M, De Rosa M, De Rosa R, deMagistris L, Secondulfo M, Fiandra R, Carratù R, Cartenì M. Cellobiose and lactulose coupled with mannitol and determined using ion-exchange chromatography with pulsed amperometric detection, are reliable probes for investigation of intestinal permeability. J. Chromatogr B Anal Technol Biomed Life Sci. 2003;783:349–57.CrossRefGoogle Scholar
  30. 30.
    Giulivi C, Zhang YF, Omanska-Klusek A, Ross-Inta C, Wong S, Hertz-Picciotto I, Tassone F, Pessah IN. Mitochondrial dysfunction in autism. JAMA. 2010;304:2389–96.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Gonzales A, Stombaugh J, Lozupone C, Turnbaugh PJ, Gordon JI, Knight R. The mind-body-microbial continuum. Dialogues. Clin Neurosci. 2011;13:55–62.Google Scholar
  32. 32.
    Herbert MR, Russo JP, Yang S, Roohi J, Blaxill M, Kahler SG, et al. Autism and environmental genomics. Neurotoxicology. 2006;27:671–84.CrossRefPubMedGoogle Scholar
  33. 33.
    Hertz-Picciotto I, Croen LA, Hansen R, Jones CR, Van dewater J, Pessah IN. The CHARGE study: an epidemiologic investigation of genetic and environmental factors contributing to autism. Environ Health Perspect. 2006;114:1119–25.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kantarcioglu SA, Kiraz N, Aydin A. Microbiota-Gut-Brain axis: yeast species isolated from stool samples of children with suspected or diagnosed autism spectrum disorders and in vitro susceptibility against nystatin and fluconazole. Mycopathologia. 2016;181:1–7.CrossRefPubMedGoogle Scholar
  35. 35.
    Kidd PM. Autism, an extreme challenge to integrative medicine. Part 2: medical management. Altern Med Rev. 2002;7:472–99.PubMedGoogle Scholar
  36. 36.
    Kumamoto CA. Inflammation and gastrointestinal Candida colonization. Curr Opin Microbiol. 2011;14:386–91.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Jyonouchi H, Geng L, Streck DL, Toruner GA. Immunological characterization and transcription profiling of peripheral blood (PB) monocytes in children with autism spectrum disorders (ASD) and specific polysaccharide antibody deficiency (SPAD): case study. J Neuroinflamm. 2012;9:4.CrossRefGoogle Scholar
  38. 38.
    Jyonouchi H, Geng L, Davidow AL. Cytokine profiles by peripheral blood monocytes are associated with changes in behavioural symptoms following immune insults in a subset of ASD subjects: an inflammatory subtype? J Neuroinflamm. 2014;11:187.CrossRefGoogle Scholar
  39. 39.
    Lord C, Rutter M, Le Couteur A. Autism diagnostic interview-revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord. 1994;24:659–85.CrossRefPubMedGoogle Scholar
  40. 40.
    Lord C, Risi S, Lambrecht L, Cook EH Jr, Leventhal BL, DiLavore PC, Pickles A, Rutter M. The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord. 2000;30:205–23.CrossRefPubMedGoogle Scholar
  41. 41.
    Losh M, Sullivan PF, Trembath D, Piven J. Current developments in the genetics of autism: from phenome to genome. J Neuropathol Exp Neurol. 2008;67:829–37.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    MacDonald TT. The significance of ileocolonic lymphoid nodular hyperplasia in children with autistic spectrum disorders. Eur J Gastroenterol Hepatol. 2006;18:569–73.CrossRefPubMedGoogle Scholar
  43. 43.
    Martirosian G, Ekiel A, Aptekorz M, et al. Fecal lactoferrin and Clostridium spp in stools of autistic children. Anaerobe. 2011;17:43–5.CrossRefPubMedGoogle Scholar
  44. 44.
    Molloy CA, Manning-Courtney P. Prevalence of chronic gastrointestinal symptoms in children with autism and autistic spectrum disorders. Autism. 2003;7:165–71.CrossRefPubMedGoogle Scholar
  45. 45.
    Moorthy GL, Murali MR, Devaraj SN. Lactobacilli facilitate maintenance of intestinal membrane integrity during Shigella dysenteriae-1 infection in rats. Nutrition. 2009;25(3):350–8.CrossRefPubMedGoogle Scholar
  46. 46.
    Nieminem MT, Uittamo J, Salaspuro M, Rautemaa R. Acetaldehyde production from ethanol and glucose by non-Candida albicans yeasts in vitro. Oral Oncol. 2009;45:e245–8.CrossRefGoogle Scholar
  47. 47.
    Onore C, Careaga M, Ashwood P. The role of immune dysfunction in the pathophysiology of autism. Brain Behav Immun. 2012;26:383–92.CrossRefPubMedGoogle Scholar
  48. 48.
    Parracho HM, Bingham MO, Gibson GR, et al. Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J Med Microbiol. 2005;54:987–91.CrossRefPubMedGoogle Scholar
  49. 49.
    Petrof EO, Claud EC, Gloor GB, Allen-Vercoe E. Microbial ecosystems therapeutics: a new paradigm in medicine? Benef Microbes. 2013;4:53–65.CrossRefPubMedGoogle Scholar
  50. 50.
    Rizzetto L, Weil T, Cavalieri D. Systems level dissection of Candida recognition by Dectins: a matter of fungal morphology and site of infection. Pathogens. 2015;4:639–61.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Roseth AG, Fagerhol MK, Aadland E, et al. Assessment of the neutrophil dominating protein calprotectin in feces: a methodological study. Scand J Gastroenterol. 1992;27:793–8.CrossRefPubMedGoogle Scholar
  52. 52.
    Sacco R, Lenti C, Saccani M, et al. Cluster analysis of autistic patients based on principal pathogenetic component. Autism Res. 2012;5:137–47.CrossRefPubMedGoogle Scholar
  53. 53.
    Sandler RH, Finegold SM, Bolte ER, et al. Short-term benefit from oral vancomycin treatment of regressive-onset autism. J Child Neurol. 2000;15:429–35.CrossRefPubMedGoogle Scholar
  54. 54.
    Semon BA. Dietary cyclic dipeptides, apoptosis and psychiatric disorders; a hypothesis. Med Hypotheses. 2014;82:740–3.CrossRefPubMedGoogle Scholar
  55. 55.
    Schopler E, Reichler RJ, Renner BR. The childhood autism rating scale (CARS). Los Angeles: Western Psychological Service Inc.; 1988.Google Scholar
  56. 56.
    Sekirov I, Russell SL, Antunes LC, Finlay BB. Gut microbiota in health and disease. Physiol Rev. 2010;90:859–904.CrossRefPubMedGoogle Scholar
  57. 57.
    Siniscalco D, Sapone A, Giordano C, Cirillo A, de Novellis V, deMagistris L, Rossi F, Fasano A, Maione S, Antonucci N. The expression of caspases is enhanced in peripheral blood mononuclear cells of autism spectrum disorder patients. J Autism Dev Disord. 2012;42:1403–10.CrossRefPubMedGoogle Scholar
  58. 58.
    Siniscalco D, Sapone A, Giordano C, Cirillo A, deMagistris L, Rossi F, Fasano A, Bradstreet JJ, Maione S, Antonucci N. Cannabinoid receptor type 2, but not type 1, is up-regulated in peripheral blood mononuclear cells of children affected by autistic disorders. J Autism Dev Disord. 2013;43:2686–95.CrossRefPubMedGoogle Scholar
  59. 59.
    Song Y, Liu C, Finegold SM. Real-time PCR quantitation of clostridia in feces of autistic children. Appl Environ Microbiol. 2004;70:6459–65.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Wakefield AJ, Ashwood P, Limb K, et al. The significance of ileocolonic lymphoid nodular hyperplasia in children with autistic spectrum disorder. Eur J Gastroenterol Hepatol. 2005;17:827–36.CrossRefPubMedGoogle Scholar
  61. 61.
    Williams BL, Hornig M, Buie T, Bauman ML, Cho Paik M, Wick I, Bennet A, Jabado O, Hirschberg DL, Lipkin WI. Impaired carbohydrate digestion and transport and mucosal dysbiosis in the intestines of children with autism and gastrointestinal disturbances. PLoS One. 2011;6:e24585.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Williams BL, Hornig M, Parekh T, Lipkin WI, Kazek B, et al. Application of novel PCR-based methods for detection, quantitation, and phylogenetic characterization of Sutterella species in intestinal biopsy samples from children with autism and gastrointestinal disturbances. MBio. 2012;3(1):e00261-11.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Maria Rosaria Iovene
    • 1
  • Francesca Bombace
    • 1
  • Roberta Maresca
    • 2
  • Anna Sapone
    • 3
  • Patrizia Iardino
    • 1
  • Annarita Picardi
    • 1
  • Rosa Marotta
    • 4
  • Chiara Schiraldi
    • 1
  • Dario Siniscalco
    • 1
  • Nicola Serra
    • 3
  • Laura de Magistris
    • 3
    Email author
  • Carmela Bravaccio
    • 5
  1. 1.Department of Experimental MedicineSUN-Second University of NaplesNaplesItaly
  2. 2.Department of Mental Health and Public MedicineSUN-Second University of NaplesNaplesItaly
  3. 3.Department of Internal and Experimental Medicine Magrassi-LanzaraSUN-Second University of NaplesNaplesItaly
  4. 4.Department of Medical and Surgical ScienceUniversity Magna GraeciaCatanzaroItaly
  5. 5.Department of Translational Medical SciencesFederico II UniversityNaplesItaly

Personalised recommendations