, Volume 179, Issue 1–2, pp 53–62 | Cite as

Isolation and Drug Susceptibility of Candida parapsilosis Sensu Lato and other Species of C. parapsilosis Complex from Patients with Blood Stream Infections and Proposal of a Novel LAMP Identification Method for the Species

  • Plinio Trabasso
  • Tetsuhiro Matsuzawa
  • Renata Fagnani
  • Yasunori Muraosa
  • Kenichiro Tominaga
  • Mariangela Ribeiro Resende
  • Katsuhiko Kamei
  • Yuzuru Mikami
  • Angelica Zaninelli Schreiber
  • Maria Luiza Moretti


Candida parapsilosis complex (CPC) is the third Candida species isolated in blood cultures of patients from our Hospital, following C. albicans and C. tropicalis. From 2006 to 2010, the median annual distribution of CPC was 8 cases/year. Records of 36 patients were reviewed. CPC were 31 (86.1 %) C. parapsilosis; 4 (11.1 %) C. orthopsilosis; and 1 (2.8 %) C. metapsilosis. Clinical characteristics were central venous catheter, 34 (94.4 %); parental nutrition, 25 (70 %); surgery, 27 (57.9 %); prior bacteremia, 20 (51.3 %); malignancy, 18 (50 %). General mortality was 47.2 %. Death was higher in immunosuppressed patients (17 vs. 11; p = 0.003). Three out four (75 %) patients with C. orthopsilosis and 14 out 31 (45.2 %) with C. parapsilosis died (p = 0.558). Thirty-nine individual isolates were tested for susceptibility to seven antifungal drugs, with MICs values showing susceptibility to all of them. Two isolates, one C. orthopsilosis and one C. parapsilosis, had fluconazole MIC = 4 μg/mL. Differentiation among CPC has implication in caring for patients with invasive candidiasis since there are differences in virulence, pathogenicity and drug susceptibility. A method targeting the topoisomerase II gene based on loop-mediated isothermal amplification (LAMP) was developed. LAMP emerges as a promising tool for the identification of fungal species due to the high sensitivity and specificity. LAMP can be performed at the point-of-care, being no necessary the use of expensive equipment. In our study, the method was successful comparing to the DNA sequencing and proved to be a reliable and fast assay to distinguish the three species of CPC.


Candida parapsilosis Candidemia Mycoses Antifungal susceptibility Molecular diagnostic techniques LAMP 



This project was approved on February 22, 2011 (No. 039/2011) by the Ethical Committee of the School of Medical Sciences of the University of Campinas. This study was partly supported by JICA (Japan International Cooperation Agency) and SATREPS (Science and Technology Research Partnership for Sustainable Development) Grant No. 02P-29548-09.

Conflict of interest

All authors declare no conflict of interests.


  1. 1.
    Trofa D, Gácser A, Nosanchuk JD. Candida parapsilosis, an emerging fungal pathogen. Clin Microbiol Rev. 2008;21:606–25.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Asmundsdottir LR, Erlendsdottir H, Gottfredsson M. Nationwide study of candidemia, antifungal use, and antifungal drug resistance in Iceland, 2000 to 2011. J Clin Microbiol. 2013;51:841–8.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Moretti ML, Trabasso P, Lyra L, Fagnani R, Resende MR, de Oliveira Cardoso LG, Schreiber AZ. Is the incidence of candidemia caused by Candida glabrata increasing in Brazil? Five-year surveillance of Candida bloodstream infection in a university reference hospital in southeast Brazil. Med Mycol. 2013;51:225–30.PubMedCrossRefGoogle Scholar
  4. 4.
    Azevedo AC, Bizerra FC, da Matta DA, de Almeida LP, Rosas R, Colombo AL. In vitro susceptibility of a large collection of Candida strains against fluconazole and voriconazole by using the CLSI disk diffusion assay. Mycopathologia. 2011;171(6):411–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Horn DL, Neofytos D, Anaissie EJ, Fishman JA, Steinbach WJ, Olyaei AJ, Marr KA, Pfaller MA, Chang CH, Webster KM. Epidemiology and outcomes of candidemia in 2019 patients: data from the prospective antifungal therapy alliance registry. Clin Infect Dis. 2009;48(12):1695–703.PubMedCrossRefGoogle Scholar
  6. 6.
    Colombo AL, Nucci M, Park BJ, Nouér SA, Arthington-Skaggs B, da Matta DA, Warnock D, Morgan J. Brazilian Network Candidemia Study. Epidemiology of candidemia in Brazil: a nationwide sentinel surveillance of candidemia in eleven medical centers. J Clin Microbiol. 2006;44(8):2816–23.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Canton E, Pemán J, Quindós G, Eraso E, Miranda-Zapico I, Álvarez M, Merino P, Campos-Herrero I, Marco F, de la Pedrosa EG, Yagüe G, Guna R, Rubio C, Miranda C, Pazos C, Velasco D. FUNGEMYCA Study Group. Prospective multicenter study of the epidemiology, molecular identification, and antifungal susceptibility of Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis isolated from patients with candidemia. Antimicrob Agents Chemother. 2011;55:5590–6.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Pfaller M, Neofytos D, Diekema D, Azie N, Meies-Kriesche HU, Quan SP, Horn D. Epidemiology and outcomes of candidemia in 3,648 patients: data from the prospective antifungal therapy (PATH Alliance®) registry, 2004–2008. Diagn Microbiol Infect Dis. 2012;74:323–31.PubMedCrossRefGoogle Scholar
  9. 9.
    Das I, Nightingale P, Patel M, Jumaas P. Epidemiology, clinical characteristics, and outcome of candidemia; experience in a tertiary referral center in the UK. Int J Infect Dis. 2011;15:759–63.CrossRefGoogle Scholar
  10. 10.
    Falagas ME, Roussos N, Vardakas KZ. Relative frequency of albicans and the various non-albicans Candida spp among candidemia isolates from inpatients in various parts of the world: a systematic review. Int J Infect Dis. 2010;14(11):e954–66.PubMedCrossRefGoogle Scholar
  11. 11.
    Oeser C, Vergnano S, Naidoo R, Anthony M, Chang J, Chow P, Clarke P, Embleton N, Kennea N, Pattnayak S, Reichert B, Scorrer T, Tiron I, Watts T, Sharland M, Heath PT. The Neonatal Infection Surveillance Network (neonIN). Neonatal invasive fungal infection in England 2004–2010. Clin Microbiol Infect. 2014;20(9):936–41. doi: 10.1111/1469-0691.12578.
  12. 12.
    Juyal D, Sharma M, Pal S, Rathaur VK, Sharma N. Emergence of non-albicans Candida species in neonatal candidemia. N Am J Med Sci. 2013;5:541–5.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Dotes J, Prasad PA, Zaoutis T, Roilides E. Epidemiology, risk factors and outcome of Candida parapsilosis bloodstream infection in children. Pediatr Infect Dis J. 2012;31:557–60.CrossRefGoogle Scholar
  14. 14.
    Martino P, Girmenia C, Micozzi A, Raccah R, Gentile G, Venditti M, Mandelli F. Fungemia in patients with leukemia. Am J Med Sci. 1993;306:225–32.PubMedCrossRefGoogle Scholar
  15. 15.
    Kuhn DM, Mukherjee PK, Clark Ta, et al. Candida parapsilosis characterization in an outbreak setting. Emerg Infect Dis. 2004;10:1074–81.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Levin AS, Costa SF, Mussi NS, et al. Candida parapsilosis fungemia associated with implantable and semi-implantable central venous catheter and the hands of health care workers. Diagn Microbiol Infect Dis. 1998;30:243–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Tavanti A, Davidson AD, Gow NAR, Maiden MCJ, Odds FC. Candida orthopsilosis and Candida metapsilosis spp. nov. to replace Candida parapsilosis groups II and III. J Clin Microbiol. 2005;43:284–92.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Gago S, García-Rodas R, Cuesta I, Mellado E, Alastruey-Izquierdo A. Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis virulence in the non-conventional host Galleria mellonella. Virulence. 2014;5(2):278–85.PubMedCrossRefGoogle Scholar
  19. 19.
    Sakai K, Trabasso P, Moretti ML, Mikami Y, Kamei K, Gonoi T. Identification of fungal pathogens by visible microarray system in combination with isothermal gene amplification. Mycopathologia. 2014;178(1–2):11–26.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Buelow DR, Gu Z, Walsh TJ, Hayden RT. Evaluation of multiplexed PCR and liquid-phase array for identification of respiratory fungal pathogens. Med Mycol. 2012;50(7):775–80.PubMedCrossRefGoogle Scholar
  21. 21.
    Muraosa Y, Schreiber AZ, Trabasso P, Matsuzawa T, Taguchi H, Moretti ML, Mikami Y, Kamei K. Development of cycling probe-based real-time PCR system to detect Fusarium species and Fusarium solani species complex (FSSC). Int J Med Microbiol. 2014;304(3–4):505–11.PubMedCrossRefGoogle Scholar
  22. 22.
    Hall L, Wohlfiel S, Roberts GD. Experience with the MicroSeq D2 large-subunit ribosomal DNA sequencing kit for identification of filamentous fungi encountered in the clinical laboratory. J Clin Microbiol. 2004;42(2):622–6.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Hung WT, Su SL, Shiu LY, Chang TC. Rapid identification of allergenic and pathogenic molds in environmental air by an oligonucleotide array. BMC Infect Dis. 2011;11:91. doi: 10.1186/1471-2334-11-91.
  24. 24.
    Nguyen MH, Wissel MC, Shields RK, Salomoni MA, Hao B, Press EG, Shields RM, Cheng S, Mitsani D, Vadnerkar A, Silveira FP, Kleiboeker SB, Clancy CJ. Performance of Candida real-time polymerase chain reaction, β-d-glucan assay, and blood cultures in the diagnosis of invasive candidiasis. Clin Infect Dis. 2012;54(9):1240–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Fricke S, Fricke C, Schimmelpfennig C, Oelkrug C, Schönfelder U, Blatz R, Zilch C, Faber S, Hilger N, Ruhnke M, Rodloff AC. A real-time PCR assay for the differentiation of Candida species. J Appl Microbiol. 2010;109(4):1150–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Souza ARC, Ferreira RC, Goncalves SS, Quindos G, Eraso GQ, Birerra FC, Briones MRS, Colombo AL. Accurate identification of Candida parapsilosis (sensu Lato) by use of mitochondrial DNA and real-time PCR. J Clin Microbiol. 2012;50:2310–4.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Mori Y, Kitao M, Tomita N, Notomi T. Real-time turbidimetry of LAMP reaction for quantifying template DNA. J Biochem Biophys Methods. 2004;59(2):145–57.PubMedCrossRefGoogle Scholar
  28. 28.
    Uemura N, Makimura K, Onozaki M, Otsuka Y, Shibuya Y, Yazaki H, Kikuchi Y, Abe S, Kudo S. Development of a loop-mediated isothermal amplification method for diagnosis Pneumocystis pneumonia. J Med Mycol. 2008;57:50–7.Google Scholar
  29. 29.
    Poon LL, Leung CS, Chan KH, Lee LH, Yuen KY, Guan Y, Peiris JS. Detection of human influenza A viruses by loop-mediated isothermal amplification. J Clin Microbiol. 2005;43:427–30.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Endo S, Komori T, Ricci G, Sano A, Yokoyama K, Ohori A, Kamei K, Franco M, Miyaji M, Nishimura K. Detection of gp43 of Paracoccidioides brasiliensis by the loop-mediated isothermal amplification (LAMP) method. FEMS Microbiol Lett. 2004;234:93–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Iida S, Imai T, Oguri T, Okuzumi K, Yamanaka A, Moretti ML, Nishimura K, Mikami Y. Genetic diversity of the internal transcribed spacers (ITS) and 5.8S rRNA genes among the clinical isolates of Candida parapsilosis in Brazil and Japan Jap. J Med Mycol. 2005;46:133–7.CrossRefGoogle Scholar
  32. 32.
    Clinical Laboratory Standards Institute (CLSI). Reference method for broth dilution antifungal susceptibility testing of yeasts; Fourth Informational Supplement. CLSI Document M27-S4. Wayne, PA: Clinical and Laboratory Standards Institute; 2012.Google Scholar
  33. 33.
    Singla N, Gulati N, Kaistha N, Chander J. Candida colonization in urine samples of ICU patients: determination of etiology, antifungal susceptibility testing and evaluation of associated risk factors. Mycopathologia. 2012;174(2):149–55.PubMedCrossRefGoogle Scholar
  34. 34.
    Lockhart SR, Messer SA, Pfaller MA, Diekema DJ. Geographic distribution and antifungal susceptibility of the newly described species Candida orthopsilosis and Candida metapsilosis in comparison to the closely related species Candida parapsilosis. J Clin Microbiol. 2008;46:2659–64.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Pfaller MA, Diekema DJ, Andes D, Arendrup MC, Brown SD, Lockhart SR, Motyl M, Perlin DS. The CLSI subcommittee for antifungal testing Clinical breakpoints for equinocandins and Candida revisited: integration of molecular, clinical, and microbiological data to arrive at species-specific interpretive criteria. Drug Res Updates. 2011;14:164–76.CrossRefGoogle Scholar
  36. 36.
    Pfaller MA, Andes D, Arendrup M, Diekema DJ, Espinel-Ingroff A, Alexander BD, Brown SD, Chaturvedi V, Fowler CL, Ghannoum MA, Johnson EM, Knapp CC, Motyl MR, Ostrosky-Zeichner L, Walsh TJ. Clinical breakpoints for voriconazole and Candida spp. revisited: review of microbiologic, molecular, pharmacodynamics, and clinical data as they pertain to the development of species-specific interpretive criteria. Diagn Microbiol Infect Dis. 2011;70:330–43.PubMedCrossRefGoogle Scholar
  37. 37.
    Pfaller MA, Boyken L, Hollis RJ, Kroeger J, Messer SA, Tendolkar S, Wild-type Diekema DJ, IC M. distributions and epidemiological cutoff values for posaconazole and voriconazole and Candida spp. as determined by 24-h CLSI broth microdilution. J Clin Microbiol. 2010;49:630–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Pfaller MA, Andes D, Diekema DJ, Espinel-Ingroff A, Sheehan D. The CLSI subcommittee for antifungal susceptibility testing Wild-type MIC distributions, epidemiological cutoff values and species-specific clinical breakpoints for fluconazole and Candida: time for harmonization of CLSI and EUCAST broth microdilution methods. Drug Res Updates. 2010;13:180–95.CrossRefGoogle Scholar
  39. 39.
    Katsu M, Kidd S, Ando A, Moretti ML, Mikami Y, Nishimura K, Meyer W. The internal transcribed spacers and 5.8S rRNA gene show extensive diversity among isolates of the Cryptococcus neoformans species complex. FEMS Yeast Res. 2004;4:377–88.PubMedCrossRefGoogle Scholar
  40. 40.
    Tamura M, Watanabe K, Mikami Y, Yazawa K, Nishimura K. Molecular characterization of new clinical isolates of Candida albicans and C. dubliniensis in Japan: analysis reveals a new genotype of C. albicans with group I intron. J Clin Microbiol. 2001;39(12):4309–15.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Matsuzawa T, Tanaka R, Horie Y, Gonoi T, Yaguchi T. Development of rapid and specific molecular discrimination methods for pathogenic Emericella species. Nihon Ishinkin Gakkai Zasshi. 2010;51(2):109–16.PubMedCrossRefGoogle Scholar
  42. 42.
    Silva AP, Miranda IM, Lisboa C, Pina-Vaz C, Rodrigues AG. Prevalence, distribution, and antifungal susceptibility profiles of Candida parapsilosis, C. orthopsilosis, and C. metapsilosis in a tertiary care hospital. Clin Microbiol. 2009;47:2392–7.CrossRefGoogle Scholar
  43. 43.
    Wisplinghoff H, Ebbers J, Geurtz L, Stefanik D, Major Y, Edmond MB, Wenzel RP, Seifert H. Nosocomial bloodstream infections due to Candida spp. in the USA: species distribution, clinical features and antifungal susceptibilities. Clin Microbiol. 2014;43(1):78–81.Google Scholar
  44. 44.
    Brito LR, Guimaraes T, Nucci M, Rosas RC, Paula Almeida L, Da Matta DA, Colombo AL. Clinical and microbiological aspects of candidemia due to Candida parapsilosis in Brazilian tertiary care hospitals. Med Mycol. 2006;44:261–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Garcia-Effron G, Canton E, Peman J, Dilger A, Romá E, Perlin DS. Epidemiology and echinocandin susceptibility of Candida parapsilosis sensu lato species isolated from bloodstream infections at a Spanish university hospital. J Antimicrob Chemother. 2012;67:2739–48.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Pfaller MA, Diekema DJ, Procop GW, Rinaldi MG. Comparison of the Vitek 2 yeast susceptibility system with CLSI microdilution for antifungal susceptibility testing of fluconazole and voriconazole against Candida spp., using new clinical breakpoints and epidemiological cutoff values. Diagn Microbiol Infect Dis. 2013;77:37–40.PubMedCrossRefGoogle Scholar
  47. 47.
    Németh T, Tóth A, Szenzenstein J, Horváth P, Nosanchuk JD, Grózer Z, Tóth R, Papp C, Hamari Z, Vágvolgyi C, Gácser A. Characterization of virulence properties in the C. parapsilosis sensu lato species. PLoS ONE. 2013;8:e68704.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Kasahara K, Ishikawa H, Sato S, Shimakawa Y, Watanabe K. Development of multiplex loop-mediated isothermal amplification assays to detect medically important yeasts in dairy products. FEMS Microbiol Lett. 2014;357(2):208–16.PubMedGoogle Scholar
  49. 49.
    Ferrari M, Resende M, Sakai K, Muraosa Y, Lyra L, Gonoi T, Mikami Y, Tominaga K, Kamei K, Schreiber A, Trabasso P, Moretti ML. Accurate visual DAN-microarray for the molecular identification of non-albicans Candida species isolated from candidemia episodes. J Clin Microbiol. 2013;51(11):3826–9.CrossRefGoogle Scholar
  50. 50.
    Inacio J, Flores O, Spencer-Matrins I. Efficient identification of clinical relevant Candida yeast species by use of an assay combining panfungal loop-mediated isothermal DNA amplification with hybridization to species-specific oligonucleotide probes. J Clin Microbiol. 2008;46:713–29.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Hara-Kudo Y, Yoshino M, Kojima T, Ikedo M. Loop-mediated isothermal amplification for the rapid detection of Slamonella. FEMS Micribiol Lett. 2005;255:155–61.CrossRefGoogle Scholar
  52. 52.
    Pfaller MA, Andes DR, Diekema DJ, Horn DL, Reboli AC, et al. Epidemiology and outcomes of invasive candidiasis due to non-albicans species of Candida in 2,496 Patients: data from the Prospective Antifungal Therapy (PATH) Registry 2004–2008. PLoS ONE. 2014;9(7):e101510. doi: 10.1371/journal.pone.0101510.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Prandini TH, Theodoro RC, Bruder-Nascimento AC, Scheel CM, Bagagli E. Analysis of inteins in the Candida parapsilosis complex for simple and accurate species identification. J Clin Microbiol. 2013;51:2830–6.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Plinio Trabasso
    • 1
  • Tetsuhiro Matsuzawa
    • 2
  • Renata Fagnani
    • 1
  • Yasunori Muraosa
    • 3
  • Kenichiro Tominaga
    • 3
  • Mariangela Ribeiro Resende
    • 1
  • Katsuhiko Kamei
    • 3
  • Yuzuru Mikami
    • 3
  • Angelica Zaninelli Schreiber
    • 4
  • Maria Luiza Moretti
    • 1
  1. 1.Infectious Diseases Division, School of Medical SciencesUniversity of CampinasCampinasBrazil
  2. 2.University of NagasakiNagasakiJapan
  3. 3.Medical Mycology Research CenterChiba UniversityChuokuJapan
  4. 4.Department of Clinical Pathology, School of Medical SciencesUniversity of CampinasCampinasBrazil

Personalised recommendations