, Volume 178, Issue 3–4, pp 207–215 | Cite as

Sub-inhibitory Concentrations of Antifungals Suppress Hemolysin Activity of Oral Candida albicans and Candida tropicalis Isolates from HIV-Infected Individuals

  • Sukumaran Anil
  • Mohamed Hashem
  • Sajith Vellappally
  • Shankargouda Patil
  • H. M. H. N. Bandara
  • L. P. Samaranayake


Secretion of hydrolytic enzymes such as hemolysin is considered an important virulence attribute of the opportunistic pathogenic fungus Candida. It is known that Candida spp. isolated from HIV-infected patients produce copious hemolysins. As common antifungal agents may perturb the production of extracellular enzymes, we evaluated the effect of three antifungals nystatin, amphotericin B and fluconazole on the hemolytic activity of Candida albicans and Candida tropicalis isolates from HIV-infected individuals. The impact of antimycotics on hemolytic activity was assessed by a previously described in vitro plate assay, after exposing ten isolates each of C. albicans and C. tropicalis recovered from HIV-infected individuals to sub-minimum inhibitory concentrations (sub-MIC) of nystatin, amphotericin B and fluconazole. All Candida isolates showed a significant reduction in hemolytic activity. The reduction was highest for amphotericin B-exposed C. albicans and C. tropicalis followed by nystatin and fluconazole. The effect of antimycotics was more pronounced on the hemolytic activity of C. tropicalis compared to that of C. albicans. Commonly used antifungal agents significantly suppress hemolysin activity of Candida species. This implies that the antifungals, in addition to their lethality, may modulate key virulence attributes of the yeast. The clinical relevance of this phenomenon in HIV disease and other similar pathologies remains to be determined.


Candida Antifungal agents Virulence attributes Hemolysin HIV infection Nystatin 



The authors would also like to extend their appreciation to the Research Centre, College of Applied Medical Sciences and Deanship of Scientific Research at King Saud University for funding this research.


  1. 1.
    Samaranayake LP, MacFarlane TW. Oral candidosis. London: Wright; 1990.Google Scholar
  2. 2.
    Henriques M, Azeredo J, Oliveira R. Candida species adhesion to oral epithelium: factors involved and experimental methodology used. Crit Rev Microbiol. 2006;32(4):217–26.PubMedCrossRefGoogle Scholar
  3. 3.
    Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannoum MA. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol. 2001;183(18):5385–94.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Odds FC. Candida infections: an overview. Crit Rev Microbiol. 1987;15(1):1–5.PubMedCrossRefGoogle Scholar
  5. 5.
    Leroy O, Gangneux JP, Montravers P, Mira JP, Gouin F, Sollet JP, et al. Epidemiology, management, and risk factors for death of invasive Candida infections in critical care: a multicenter, prospective, observational study in France (2005–2006). Crit Care Med. 2009;37(5):1612–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Menezes TO, Gillet LC, Menezes SA, Feitosa RN, Ishak MO, Ishak R, et al. Virulence factors of Candida albicans isolates from the oral cavities of HIV-1-positive patients. Curr HIV Res. 2013;11(4):304–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Fidel PL Jr, Vazquez JA, Sobel JD. Candida glabrata: review of epidemiology, pathogenesis, and clinical disease with comparison to C. albicans. Clin Microbiol Rev. 1999;12(1):80–96.PubMedCentralPubMedGoogle Scholar
  8. 8.
    Samaranayake LP, Leung WK, Jin L. Oral mucosal fungal infections. Periodontology. 2000;2009(49):39–59.Google Scholar
  9. 9.
    Blignaut E. Oral candidiasis and oral yeast carriage among institutionalised South African paediatric HIV/AIDS patients. Mycopathologia. 2007;163(2):67–73.PubMedCrossRefGoogle Scholar
  10. 10.
    Blignaut E, Patton LL, Nittayananta W, Ramirez-Amador V, Ranganathan K, Chattopadhyay A. (A3) HIV phenotypes, oral lesions, and management of HIV-related disease. Adv Dent Res. 2006;19(1):122–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Bravo IM, Correnti M, Escalona L, Perrone M, Brito A, Tovar V, et al. Prevalence of oral lesions in HIV patients related to CD4 cell count and viral load in a Venezuelan population. Med Oral Patol Oral Cir Bucal. 2006;11(1):E33–9.PubMedGoogle Scholar
  12. 12.
    Kaviarasan PK, Thappa DM, Jaisankar TJ, Sujatha S. Candidiasis in HIV-infected patients: a clinical and microbiological study. Natl Med J India. 2002;15(1):51–2.PubMedGoogle Scholar
  13. 13.
    Lattif AA, Banerjee U, Prasad R, Biswas A, Wig N, Sharma N, et al. Susceptibility pattern and molecular type of species-specific Candida in oropharyngeal lesions of Indian human immunodeficiency virus-positive patients. J Clin Microbiol. 2004;42(3):1260–2.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Patton LL. Sensitivity, specificity, and positive predictive value of oral opportunistic infections in adults with HIV/AIDS as markers of immune suppression and viral burden. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2000;90(2):182–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Selwyn PA, Alcabes P, Hartel D, Buono D, Schoenbaum EE, Klein RS, et al. Clinical manifestations and predictors of disease progression in drug users with human immunodeficiency virus infection. N Engl J Med. 1992;327(24):1697–703.PubMedCrossRefGoogle Scholar
  16. 16.
    Abi-Said D, Anaissie E, Uzun O, Raad I, Pinzcowski H, Vartivarian S. The epidemiology of hematogenous candidiasis caused by different Candida species. Clin Infect Dis. 1997;24(6):1122–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Hauman CH, Thompson IO, Theunissen F, Wolfaardt P. Oral carriage of Candida in healthy and HIV-seropositive persons. Oral Surg Oral Med Oral Pathol. 1993;76(5):570–2.PubMedCrossRefGoogle Scholar
  18. 18.
    Kirkpatrick WR, Revankar SG, McAtee RK, Lopez-Ribot JL, Fothergill AW, McCarthy DI, et al. Detection of Candida dubliniensis in oropharyngeal samples from human immunodeficiency virus-infected patients in North America by primary CHROMagar candida screening and susceptibility testing of isolates. J Clin Microbiol. 1998;36(10):3007–12.PubMedCentralPubMedGoogle Scholar
  19. 19.
    Cutler JE. Putative virulence factors of Candida albicans. Annu Rev Microbiol. 1991;45:187–218.PubMedCrossRefGoogle Scholar
  20. 20.
    Darwazeh AM, Lamey PJ, Samaranayake LP, MacFarlane TW, Fisher BM, Macrury SM, et al. The relationship between colonisation, secretor status and in vitro adhesion of Candida albicans to buccal epithelial cells from diabetics. J Med Microbiol. 1990;33(1):43–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Favero D, Franca EJ, Furlaneto-Maia L, Quesada RM, Furlaneto MC. Production of haemolytic factor by clinical isolates of Candida tropicalis. Mycoses. 2011;54(6):e816–20.PubMedCrossRefGoogle Scholar
  22. 22.
    Odds FC. Candida and candidosis: a review and bibliography. 2nd ed. London: Bailliere Tindall; 1988.Google Scholar
  23. 23.
    Mane A, Gaikwad S, Bembalkar S, Risbud A. Increased expression of virulence attributes in oral Candida albicans isolates from human immunodeficiency virus-positive individuals. J Med Microbiol. 2012;61(Pt 2):285–90.PubMedCrossRefGoogle Scholar
  24. 24.
    Calderone RA, Fonzi WA. Virulence factors of Candida albicans. Trends Microbiol. 2001;9(7):327–35.PubMedCrossRefGoogle Scholar
  25. 25.
    D'Eca Jr A, Silva AF, Rosa FC, Monteiro SG, de Maria Silva Figueiredo P, de Andrade Monteiro C. In vitro differential activity of phospholipases and acid proteinases of clinical isolates of Candida. Revista da Sociedade Brasileira de Medicina Tropical. 2011;44:334–8.Google Scholar
  26. 26.
    Tamura NK, Negri MF, Bonassoli LA, Svidzinski TI. Virulence factors for Candida spp. recovered from intravascular catheters and hospital workers hands. Rev Soc Bras Med Trop. 2007;40(1):91–3.PubMedCrossRefGoogle Scholar
  27. 27.
    Sardi JC, Duque C, Hofling JF, Goncalves RB. Genetic and phenotypic evaluation of Candida albicans strains isolated from subgingival biofilm of diabetic patients with chronic periodontitis. Med Mycol. 2012;50(5):467–75.PubMedCrossRefGoogle Scholar
  28. 28.
    Haynes K. Virulence in Candida species. Trends Microbiol. 2001;9(12):591–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Kumar CP, Kumar SS, Menon T. Phospholipase and proteinase activities of clinical isolates of Candida from immunocompromised patients. Mycopathologia. 2006;161(4):213–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Ghannoum MA. Potential role of phospholipases in virulence and fungal pathogenesis. Clin Microbiol Rev. 2000;13(1):122–43, table of contents.Google Scholar
  31. 31.
    Khan MSA, Ahmad I, Aqil F, Owais M, Shahid M, Musarrat J. Virulence and pathogenicity of fungal pathogens with special reference to Candida albicans. In: Ahmad I, Owais M, Shahid M, Aqil F, editors. Combating fungal infections. Berlin: Springer; 2010. p. 21–45.CrossRefGoogle Scholar
  32. 32.
    Naglik JR, Challacombe SJ, Hube B. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev MMBR. 2003;67(3):400–28, table of contents.Google Scholar
  33. 33.
    De Luca C, Guglielminetti M, Ferrario A, Calabr M, Casari E. Candidemia: species involved, virulence factors and antimycotic susceptibility. N Microbiol. 2012;35(4):459–68.Google Scholar
  34. 34.
    Chin VK, Foong KJ, Maha A, Rusliza B, Norhafizah M, Ng KP, et al. Candida albicans isolates from a Malaysian hospital exhibit more potent phospholipase and haemolysin activities than non-albicans Candida isolates. Trop Biomed. 2013;30(4):654–62.PubMedGoogle Scholar
  35. 35.
    Luo G, Samaranayake LP, Yau JY. Candida species exhibit differential in vitro hemolytic activities. J Clin Microbiol. 2001;39(8):2971–4.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Seneviratne CJ, Wong SS, Yuen KY, Meurman JH, Parnanen P, Vaara M, et al. Antifungal susceptibility and virulence attributes of bloodstream isolates of Candida from Hong Kong and Finland. Mycopathologia. 2011;172(5):389–95.PubMedCrossRefGoogle Scholar
  37. 37.
    Samaranayake YH, Dassanayake RS, Jayatilake JA, Cheung BP, Yau JY, Yeung KW, et al. Phospholipase B enzyme expression is not associated with other virulence attributes in Candida albicans isolates from patients with human immunodeficiency virus infection. J Med Microbiol. 2005;54(Pt 6):583–93.PubMedCrossRefGoogle Scholar
  38. 38.
    Rossoni RD, Barbosa JO, Vilela SF, Jorge AO, Junqueira JC. Comparison of the hemolytic activity between C. albicans and non-albicans Candida species. Braz Oral Res. 2013;27(6):484–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Ramesh N, Priyadharsini M, Sumathi CS, Balasubramanian V, Hemapriya J, Kannan R. Virulence factors and anti fungal sensitivity pattern of Candida spp. isolated from HIV and TB Patients. Indian J Microbiol. 2011;51(3):273–8.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Molepo J, Musenge E. Clade-related phenotypic switching among fluconazole resistant Candida albicans isolates. SADJ J S Afr Dent Assoc = tydskrif van die Suid-Afrikaanse Tandheelkundige Vereniging. 2012;67(7):326–8.Google Scholar
  41. 41.
    Moralez AT, Franca EJ, Furlaneto-Maia L, Quesada RM, Furlaneto MC. Phenotypic switching in Candida tropicalis: association with modification of putative virulence attributes and antifungal drug sensitivity. Med Mycol. 2014;52:106–14.Google Scholar
  42. 42.
    Samaranayake YH, Cheung BP, Wang Y, Yau JY, Yeung KW, Samaranayake LP. Fluconazole resistance in Candida glabrata is associated with increased bud formation and metallothionein production. J Med Microbiol. 2013;62(Pt 2):303–18.PubMedCrossRefGoogle Scholar
  43. 43.
    Samaranayake LP, MacFarlane TW, Lamey PJ, Ferguson MM. A comparison of oral rinse and imprint sampling techniques for the detection of yeast, coliform and Staphylococcus aureus carriage in the oral cavity. J Oral Pathol. 1986;15(7):386–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Buesching WJ, Kurek K, Roberts GD. Evaluation of the modified API 20C system for identification of clinically important yeasts. J Clin Microbiol. 1979;9(5):565–9.PubMedCentralPubMedGoogle Scholar
  45. 45.
    NCCLS. Reference method for broth dilution antifungal susceptibility testing of yeasts—approved standard National Committee for Clinical Laboratory Standards. 2nd ed. Pennsylvania: NCCLS; 2002.Google Scholar
  46. 46.
    McDonald PJ, Craig WA, Kunin CM. Persistent effect of antibiotics on Staphylococcus aureus after exposure for limited periods of time. J Infect Dis. 1977;135(2):217–23.PubMedCrossRefGoogle Scholar
  47. 47.
    Anil S, Ellepola AN, Samaranayake LP. The impact of polyene, azole, and DNA analogue antimycotics on the cell surface hydrophobicity of Candida albicans and Candida tropicalis in HIV infection. Mycopathologia. 2002;153(4):179–85.PubMedCrossRefGoogle Scholar
  48. 48.
    Wu T, Samaranayake LP, Cao BY, Wang J. In vitro proteinase production by oral Candida albicans isolates from individuals with and without HIV infection and its attenuation by antimycotic agents. J Med Microbiol. 1996;44(4):311–6.PubMedCrossRefGoogle Scholar
  49. 49.
    Bullen JJ. The significance of iron in infection. Rev Infect Dis. 1981;3(6):1127–38.PubMedCrossRefGoogle Scholar
  50. 50.
    Otto BR, Verweij-van Vught AM, MacLaren DM. Transferrins and heme-compounds as iron sources for pathogenic bacteria. Crit Rev Microbiol. 1992;18(3):217–33.PubMedCrossRefGoogle Scholar
  51. 51.
    Almeida RS, Wilson D, Hube B. Candida albicans iron acquisition within the host. FEMS Yeast Res. 2009;9(7):1000–12.PubMedCrossRefGoogle Scholar
  52. 52.
    Linares CE, de Loreto ES, Silveira CP, Pozzatti P, Scheid LA, Santurio JM, et al. Enzymatic and hemolytic activities of Candida dubliniensis strains. Rev Inst Med Trop Sao Paulo. 2007;49(4):203–6.PubMedCrossRefGoogle Scholar
  53. 53.
    Watanabe T, Takano M, Murakami M, Tanaka H, Matsuhisa A, Nakao N, et al. Characterization of a haemolytic factor from Candida albicans. Microbiology. 1999;145(Pt 3):689–94.PubMedCrossRefGoogle Scholar
  54. 54.
    Sutak R, Lesuisse E, Tachezy J, Richardson DR. Crusade for iron: iron uptake in unicellular eukaryotes and its significance for virulence. Trends Microbiol. 2008;16(6):261–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Negri M, Lourenço T, Silva SC, Henriques M, Azeredo J, Oliveira R. Effect of antifungal agents on non-Candida albicans Candida species enzymes secretion International Conference on Antimicrobial Research (ICAR2010); 3–5 November Valladolid, Spain; 2010. p. 392.Google Scholar
  56. 56.
    Hajjeh RA, Sofair AN, Harrison LH, Lyon GM, Arthington-Skaggs BA, Mirza SA, et al. Incidence of bloodstream infections due to Candida species and in vitro susceptibilities of isolates collected from 1998 to 2000 in a population-based active surveillance program. J Clin Microbiol. 2004;42(4):1519–27.PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Pfaller MA, Jones RN, Doern GV, Sader HS, Hollis RJ, Messer SA. International surveillance of bloodstream infections due to Candida species: frequency of occurrence and antifungal susceptibilities of isolates collected in 1997 in the United States, Canada, and South America for the SENTRY program. The SENTRY Participant Group. J Clin Microbiol. 1998;36(7):1886–9.PubMedCentralPubMedGoogle Scholar
  58. 58.
    Lewis RE. Overview of the changing epidemiology of candidemia. Curr Med Res Opin. 2009;25(7):1732–40.PubMedGoogle Scholar
  59. 59.
    Luo G, Samaranayake LP, Cheung BP, Tang G. Reverse transcriptase polymerase chain reaction (RT-PCR) detection of HLP gene expression in Candida glabrata and its possible role in in vitro haemolysin production. APMIS Acta Pathol Microbiol Immunol Scand. 2004;112(4–5):283–90.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Sukumaran Anil
    • 1
  • Mohamed Hashem
    • 2
  • Sajith Vellappally
    • 2
  • Shankargouda Patil
    • 3
  • H. M. H. N. Bandara
    • 4
  • L. P. Samaranayake
    • 5
  1. 1.Department of Periodontics and Community Dentistry, College of DentistryKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Dental Health Department, Dental Biomaterials Research Chair, College of Applied Medical SciencesKing Saud UniversityRiyadhSaudi Arabia
  3. 3.Department of Oral Pathology and Microbiology, Faculty of Dental SciencesM. S. Ramaiah University of Applied SciencesBangaloreIndia
  4. 4.College of PharmacyThe University of Texas at AustinAustinUSA
  5. 5.School of DentistryUniversity of QueenslandBrisbaneAustralia

Personalised recommendations