, Volume 178, Issue 5–6, pp 363–370 | Cite as

Immunoevasive Aspergillus Virulence Factors

  • Sanjay H. Chotirmall
  • Bojana Mirkovic
  • Gillian M. Lavelle
  • Noel G. McElvaney


Individuals with structural lung disease or defective immunity are predisposed to Aspergillus-associated disease. Manifestations range from allergic to cavitary or angio-invasive syndromes. Despite daily spore inhalation, immunocompetence facilitates clearance through initiation of innate and adaptive host responses. These include mechanical barriers, phagocyte activation, antimicrobial peptide release and pattern recognition receptor activation. Adaptive responses include Th1 and Th2 approaches. Understanding Aspergillus virulence mechanisms remains critical to the development of effective research and treatment strategies to counteract the fungi. Major virulence factors relate to fungal structure, protease release and allergens; however, mechanisms utilized to evade immune recognition continue to be important in establishing infection. These include the fungal rodlet layer, dihydroxynaphthalene-melanin, detoxifying systems for reactive oxygen species and toxin release. One major immunoevasive toxin, gliotoxin, plays a key role in mediating Aspergillus-associated colonization in the context of cystic fibrosis. Here, it down-regulates vitamin D receptor expression which following itraconazole therapy is rescued concurrent with decreased Th2 cytokine (IL-5 and IL-13) concentrations in the CF airway. This review focuses on the interaction between Aspergillus pathogenic mechanisms, host immune responses and the immunoevasive strategies employed by the organism during disease states such as that observed in cystic fibrosis.


Aspergillus Virulence Factors Immune Infection 


Conflict of interest

None of the authors have any conflicts of interest to disclose with respect to this manuscript.


  1. 1.
    Cramer RA, Rivera A, Hohl TM. Immune responses against Aspergillus fumigatus: what have we learned? Curr Opin Infect Dis. 2011;24(4):315–22. doi: 10.1097/QCO.0b013e328348b159.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Osherov N. Interaction of the pathogenic mold Aspergillus fumigatus with lung epithelial cells. Front Microbiol. 2012;3:346. doi: 10.3389/fmicb.2012.00346.PubMedCentralPubMedGoogle Scholar
  3. 3.
    Chotirmall SH, Al-Alawi M, Mirkovic B, Lavelle G, Logan PM, Greene CM, et al. Aspergillus-associated airway disease, inflammation, and the innate immune response. Biomed Res Int. 2013;2013:723129. doi: 10.1155/2013/723129.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Kwon-Chung KJ, Sugui JA. Aspergillus fumigatus—what makes the species a ubiquitous human fungal pathogen? PLoS Pathog. 2013;9(12):e1003743. doi: 10.1371/journal.ppat.1003743.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Daly P, Kavanagh K. Pulmonary aspergillosis: clinical presentation, diagnosis and therapy. Br J Biomed Sci. 2001;58(3):197–205.PubMedGoogle Scholar
  6. 6.
    Antachopoulos C, Roilides E. Cytokines and fungal infections. Br J Haematol. 2005;129(5):583–96. doi: 10.1111/j.1365-2141.2005.05498.x.PubMedCrossRefGoogle Scholar
  7. 7.
    Murdock BJ, Shreiner AB, McDonald RA, Osterholzer JJ, White ES, Toews GB, et al. Coevolution of TH1, TH2, and TH17 responses during repeated pulmonary exposure to Aspergillus fumigatus conidia. Infect Immun. 2011;79(1):125–35. doi: 10.1128/IAI.00508-10.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Murdock BJ, Falkowski NR, Shreiner AB, Sadighi Akha AA, McDonald RA, White ES, et al. Interleukin-17 drives pulmonary eosinophilia following repeated exposure to Aspergillus fumigatus conidia. Infect Immun. 2012;80(4):1424–36. doi: 10.1128/IAI.05529-11.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Gresnigt MS, Rosler B, Jacobs CW, Becker KL, Joosten LA, van der Meer JW, et al. The IL-36 receptor pathway regulates Aspergillus fumigatus-induced Th1 and Th17 responses. Eur J Immunol. 2013;43(2):416–26. doi: 10.1002/eji.201242711.PubMedCrossRefGoogle Scholar
  10. 10.
    Cunha C, Aversa F, Lacerda JF, Busca A, Kurzai O, Grube M, et al. Genetic PTX3 deficiency and aspergillosis in stem-cell transplantation. N Engl J Med. 2014;370(5):421–32. doi: 10.1056/NEJMoa1211161.PubMedCrossRefGoogle Scholar
  11. 11.
    Gresnigt MS, Bozza S, Becker KL, Joosten LA, Abdollahi-Roodsaz S, van der Berg WB, et al. A polysaccharide virulence factor from Aspergillus fumigatus elicits anti-inflammatory effects through induction of interleukin-1 receptor antagonist. PLoS Pathog. 2014;10(3):e1003936. doi: 10.1371/journal.ppat.1003936.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Bergmann A, Hartmann T, Cairns T, Bignell EM, Krappmann S. A regulator of Aspergillus fumigatus extracellular proteolytic activity is dispensable for virulence. Infect Immun. 2009;77(9):4041–50. doi: 10.1128/IAI.00425-09.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Dagenais TR, Keller NP. Pathogenesis of Aspergillus fumigatus in invasive aspergillosis. Clin Microbiol Rev. 2009;22(3):447–65. doi: 10.1128/CMR.00055-0822/3/447.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Rementeria A, Lopez-Molina N, Ludwig A, Vivanco AB, Bikandi J, Ponton J, et al. Genes and molecules involved in Aspergillus fumigatus virulence. Rev Iberoam Micol. 2005;22(1):1–23.PubMedCrossRefGoogle Scholar
  15. 15.
    Kurup VP, Shen HD, Banerjee B. Respiratory fungal allergy. Microbes Infect. 2000;2(9):1101–10.PubMedCrossRefGoogle Scholar
  16. 16.
    Aimanianda V, Bayry J, Bozza S, Kniemeyer O, Perruccio K, Elluru SR, et al. Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature. 2009;460(7259):1117–21. doi: 10.1038/nature08264.PubMedCrossRefGoogle Scholar
  17. 17.
    Beauvais A, Schmidt C, Guadagnini S, Roux P, Perret E, Henry C, et al. An extracellular matrix glues together the aerial-grown hyphae of Aspergillus fumigatus. Cell Microbiol. 2007;9(6):1588–600. doi: 10.1111/j.1462-5822.2007.00895.x.PubMedCrossRefGoogle Scholar
  18. 18.
    Paris S, Debeaupuis JP, Crameri R, Carey M, Charles F, Prevost MC, et al. Conidial hydrophobins of Aspergillus fumigatus. Appl Environ Microbiol. 2003;69(3):1581–8. doi: 10.1128/aem.69.3.1581-1588.2003.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Thau N, Monod M, Crestani B, Rolland C, Tronchin G, Latgé JP, et al. Rodletless mutants of Aspergillus fumigatus. Infect Immun. 1994;62(10):4380–8.PubMedCentralPubMedGoogle Scholar
  20. 20.
    Abad A, Fernandez-Molina JV, Bikandi J, Ramirez A, Margareto J, Sendino J, et al. What makes Aspergillus fumigatus a successful pathogen? Genes and molecules involved in invasive aspergillosis. Rev Iberoam Micol. 2010;27(4):155–82. doi: 10.1016/j.riam.2010.10.003.PubMedCrossRefGoogle Scholar
  21. 21.
    Chai LY, Netea MG, Sugui J, Vonk AG, van de Sande WW, Warris A, et al. Aspergillus fumigatus conidial melanin modulates host cytokine response. Immunobiology. 2010;215(11):915–20. doi: 10.1016/j.imbio.2009.10.002.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Jahn B, Koch A, Schmidt A, Wanner G, Gehringer H, Bhakdi S, et al. Isolation and characterization of a pigmentless-conidium mutant of Aspergillus fumigatus with altered conidial surface and reduced virulence. Infect Immun. 1997;65(12):5110–7.PubMedCentralPubMedGoogle Scholar
  23. 23.
    Thywissen A, Heinekamp T, Dahse HM, Schmaler-Ripcke J, Nietzsche S, Zipfel PF, et al. Conidial dihydroxynaphthalene melanin of the human pathogenic fungus Aspergillus fumigatus interferes with the host endocytosis pathway. Front Microbiol. 2011;2:96. doi: 10.3389/fmicb.2011.00096.PubMedCentralPubMedGoogle Scholar
  24. 24.
    Volling K, Thywissen A, Brakhage AA, Saluz HP. Phagocytosis of melanized Aspergillus conidia by macrophages exerts cytoprotective effects by sustained PI3 K/Akt signalling. Cell Microbiol. 2011;13(8):1130–48. doi: 10.1111/j.1462-5822.2011.01605.x.PubMedCrossRefGoogle Scholar
  25. 25.
    Paris S, Wysong D, Debeaupuis JP, Shibuya K, Philippe B, Diamond RD, et al. Catalases of Aspergillus fumigatus. Infect Immun. 2003;71(6):3551–62. doi: 10.1128/iai.71.6.3551-3562.2003.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Calera JA, Paris S, Monod M, Hamilton AJ, Debeaupuis JP, Diaquin M, et al. Cloning and disruption of the antigenic catalase gene of Aspergillus fumigatus. Infect Immun. 1997;65(11):4718–24.PubMedCentralPubMedGoogle Scholar
  27. 27.
    Scharf DH, Heinekamp T, Remme N, Hortschansky P, Brakhage AA, Hertweck C. Biosynthesis and function of gliotoxin in Aspergillus fumigatus. Appl Microbiol Biotechnol. 2012;93(2):467–72. doi: 10.1007/s00253-011-3689-1.PubMedCrossRefGoogle Scholar
  28. 28.
    Kupfahl C, Michalka A, Lass-Florl C, Fischer G, Haase G, Ruppert T, et al. Gliotoxin production by clinical and environmental Aspergillus fumigatus strains. Int J Med Microbiol. 2008;298(3–4):319–27. doi: 10.1016/j.ijmm.2007.04.006.PubMedCrossRefGoogle Scholar
  29. 29.
    Ben-Ami R, Lewis RE, Kontoyiannis DP. Enemy of the (immunosuppressed) state: an update on the pathogenesis of Aspergillus fumigatus infection. Br J Haematol. 2010;150(4):406–17. doi: 10.1111/j.1365-2141.2010.08283.xBJH8283.PubMedGoogle Scholar
  30. 30.
    Spikes S, Xu R, Nguyen CK, Chamilos G, Kontoyiannis DP, Jacobson RH, et al. Gliotoxin production in Aspergillus fumigatus contributes to host-specific differences in virulence. J Infect Dis. 2008;197(3):479–86. doi: 10.1086/525044.PubMedCrossRefGoogle Scholar
  31. 31.
    Chotirmall SH, McElvaney NG. Fungi in the cystic fibrosis lung: bystanders or pathogens? Int J Biochem Cell Biol. 2014;. doi: 10.1016/j.biocel.2014.03.001.PubMedGoogle Scholar
  32. 32.
    Burns JL, Emerson J, Stapp JR, Yim DL, Krzewinski J, Louden L, et al. Microbiology of sputum from patients at cystic fibrosis centers in the United States. Clin Infect Dis. 1998;27(1):158–63.PubMedCrossRefGoogle Scholar
  33. 33.
    Bargon J, Dauletbaev N, Kohler B, Wolf M, Posselt HG, Wagner TO. Prophylactic antibiotic therapy is associated with an increased prevalence of Aspergillus colonization in adult cystic fibrosis patients. Respir Med. 1999;93(11):835–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Jubin V, Ranque S. Stremler Le Bel N, Sarles J, Dubus JC. Risk factors for Aspergillus colonization and allergic bronchopulmonary aspergillosis in children with cystic fibrosis. Pediatr Pulmonol. 2010;45(8):764–71. doi: 10.1002/ppul.21240.PubMedCrossRefGoogle Scholar
  35. 35.
    de Vrankrijker AM, van der Ent CK, van Berkhout FT, Stellato RK, Willems RJ, Bonten MJ, et al. Aspergillus fumigatus colonization in cystic fibrosis: implications for lung function? Clin Microbiol Infect. 2011;17(9):1381–6. doi: 10.1111/j.1469-0691.2010.03429.x.PubMedGoogle Scholar
  36. 36.
    McMahon MA, Chotirmall SH, McCullagh B, Branagan P, McElvaney NG, Logan PM. Radiological abnormalities associated with Aspergillus colonization in a cystic fibrosis population. Eur J Radiol. 2012;81(3):e197–202. doi: 10.1016/j.ejrad.2011.01.114.PubMedCrossRefGoogle Scholar
  37. 37.
    Amin R, Dupuis A, Aaron SD, Ratjen F. The effect of chronic infection with Aspergillus fumigatus on lung function and hospitalization in patients with cystic fibrosis. Chest. 2010;137(1):171–6. doi: 10.1378/chest.09-1103.PubMedCrossRefGoogle Scholar
  38. 38.
    Coughlan CA, Chotirmall SH, Renwick J, Hassan T, Low TB, Bergsson G, et al. The effect of Aspergillus fumigatus infection on vitamin D receptor expression in cystic fibrosis. Am J Respir Crit Care Med. 2012;186(10):999–1007. doi: 10.1164/rccm.201203-0478OC.PubMedCrossRefGoogle Scholar
  39. 39.
    Kreindler JL, Steele C, Nguyen N, Chan YR, Pilewski JM, Alcorn JF, et al. Vitamin D3 attenuates Th2 responses to Aspergillus fumigatus mounted by CD4+ T cells from cystic fibrosis patients with allergic bronchopulmonary aspergillosis. J Clin Invest. 2010;120(9):3242–54. doi: 10.1172/JCI42388.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Wittke A, Weaver V, Mahon BD, August A, Cantorna MT. Vitamin D receptor-deficient mice fail to develop experimental allergic asthma. J Immunol. 2004;173(5):3432–6.PubMedCrossRefGoogle Scholar
  41. 41.
    Nguyen NL, Chen K, McAleer J, Kolls JK. Vitamin D regulation of OX40 ligand in immune responses to Aspergillus fumigatus. Infect Immun. 2013;81(5):1510–9. doi: 10.1128/IAI.01345-12.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Burgel PR, Baixench MT, Amsellem M, Audureau E, Chapron J, Kanaan R, et al. High prevalence of azole-resistant Aspergillus fumigatus in adults with cystic fibrosis exposed to itraconazole. Antimicrob Agents Chemother. 2012;56(2):869–74. doi: 10.1128/AAC.05077-11.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Baxter CG, Dunn G, Jones AM, Webb K, Gore R, Richardson MD, et al. Novel immunologic classification of aspergillosis in adult cystic fibrosis. J Allergy Clin Immunol. 2013;132(3):560–6e10. doi: 10.1016/j.jaci.2013.04.007.
  44. 44.
    Wartenberg D, Lapp K, Jacobsen ID, Dahse HM, Kniemeyer O, Heinekamp T, et al. Secretome analysis of Aspergillus fumigatus reveals Asp-hemolysin as a major secreted protein. Int J Med Microbiol. 2011;301(7):602–11. doi: 10.1016/j.ijmm.2011.04.016.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Sanjay H. Chotirmall
    • 1
    • 2
  • Bojana Mirkovic
    • 1
  • Gillian M. Lavelle
    • 1
  • Noel G. McElvaney
    • 1
  1. 1.Department of Medicine, Education and Research Centre, Beaumont HospitalRoyal College of Surgeons in IrelandDublin 9Republic of Ireland
  2. 2.Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore

Personalised recommendations