, Volume 176, Issue 5–6, pp 319–328 | Cite as

Siderophore Production by Pathogenic Mucorales and Uptake of Deferoxamine B

  • Gérald Larcher
  • Marylène Dias
  • Bienvenue Razafimandimby
  • Danielle Bomal
  • Jean-Philippe Bouchara


Clinical reports have established that mucormycosis, mainly caused by Rhizopus spp., frequently occurs in patients treated with deferoxamine B (DFO, Desferal®) which is misappropriated by these fungi. Siderophore production by twenty mucoralean isolates was therefore investigated using a commercial iron-depleted culture medium. Siderophore production was detected for most of the isolates. Our experiments confirmed that feroxamine B (iron chelate of DFO) promoted in vitro growth of Rhizopus arrhizus. Electrophoretic analysis of somatic extracts revealed iron-regulated proteins of 60 and 32 kDa which were lacking in iron-depleted culture conditions. Using a fluorescent derivative of deferoxamine B, we showed by fluorescence microscopy the entry of the siderophore within the fungal cells, thus suggesting a shuttle mechanism encompassing the uptake of the entire siderophore-ion complex into the cell. This useful tool renders possible a better understanding of iron metabolism in Mucorales which could lead to the development of new diagnostic method or new antifungal therapy using siderophores as imaging contrast agents or active drug vectors.


Mucorales Rhizopus arrhizus Siderophore Fluorescent derivative of deferoxamine B 


  1. 1.
    Howard DH. Acquisition, transport, and storage of iron by pathogenic fungi. Clin Microbiol Rev. 1999;12:394–404.PubMedGoogle Scholar
  2. 2.
    Neilands JB. Siderophores: structure and function of microbial iron transport compounds. J Biol Chem. 1995;270:26723–6.PubMedGoogle Scholar
  3. 3.
    Haas H. Molecular genetics of fungal siderophore biosynthesis and uptake: the role of siderophores in iron uptake and storage. Appl Microbiol Biotechnol. 2003;62:316–30.CrossRefPubMedGoogle Scholar
  4. 4.
    Boelaert JR, de Locht M, Van Cutsem J. Desferrioxamine: its effects on the growth of micro-organisms in vitro and in experimental infections. Rev Med Microbiol. 1993;4:171–5.CrossRefGoogle Scholar
  5. 5.
    Boelaert JR, de Locht M, Van Cutsem J, Kerreis V, Cantinieaux B, Verdonck A, Van Landuyt HW, Schneider YJ. Mucormycosis during deferoxamine therapy is a siderophore-mediated infection. J Clin Invest. 1993;91:1979–86.CrossRefPubMedGoogle Scholar
  6. 6.
    Roden MM, Zaoutis TE, Buchanan WL, Knudsen TA, Sarkisova TA, Schaufele RL, Sein M, Sein T, Chiou CC, Chu JH, Kontoyiannis DP, Walsh TJ. Epidemiology and outcome of zygomycosis: a review of 929 reported cases. Clin Infect Dis. 2005;41:634–53.CrossRefPubMedGoogle Scholar
  7. 7.
    Spellberg B, Edwards J Jr, Ibrahim A. Novel perspectives on mucormycosis: pathophysiology, presentation and management. Clin Microbiol Rev. 2005;18:556–69.CrossRefPubMedGoogle Scholar
  8. 8.
    Vitale RG, de Hoog GS, Schwarz P, Dannaoui E, Deng S, Machouart M, Voigt K, van de Sande WW, Dolatabadi S, Meis JF, Walther G. Antifungal susceptibility and phylogeny of opportunistic members of the order mucorales. J Clin Microbiol. 2012;50:66–75.CrossRefPubMedGoogle Scholar
  9. 9.
    Boelaert JR, Van Cutsem J, de Locht M, Schneider YJ, Crichton RR. Deferoxamine augments growth and pathogenicity of Rhizopus, while hydroxypyridinone chelators have no effect. Kidney Int. 1994;45:667–71.CrossRefPubMedGoogle Scholar
  10. 10.
    Ibrahim AS, Edwards JE Jr, Fu Y, Spellberg B. Deferiprone iron chelation as a novel therapy for experimental mucormycosis. J Antimicrob Chemother. 2006;58:1070–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Greenberg RN, Mullane K, van Burik JA, Raad I, Abzug MJ, Anstead G, Herbrecht R, Langston A, Marr KA, Schiller G, Schuster M, Wingard JR, Gonzalez CE, Revankar SG, Corcoran G, Kryscio RJ, Hare R. Posaconazole as salvage therapy for zygomycosis. Antimicrob Agents Chemother. 2006;50:126–33.CrossRefPubMedGoogle Scholar
  12. 12.
    Bouchara JP, Oumeziane NA, Lissitzky JC, Larcher G, Tronchin G, Chabasse D. Attachment of spores of the human pathogenic fungus Rhizopus oryzae to extracellular matrix components. Eur J Cell Biol. 1996;70:76–83.PubMedGoogle Scholar
  13. 13.
    Schwyn BC, Neilands JB. Universal chemical assay for the detection and determination of siderophores. Anal Biochem. 1987;160:47–56.CrossRefPubMedGoogle Scholar
  14. 14.
    Atkin CL, Neilands JB, Phaff HJ. Rhodotorulic acid from species of Leucosporidium, Rhodosporidium, Rhodotorula, Sporidiobolus, and Sporobolomyces and a new alanine-containing ferrichrome from Cryptococcus melibiosum. J Bacteriol. 1970;103:722–33.PubMedGoogle Scholar
  15. 15.
    Arnow LE. Colorimetric determination of the components of 3,4-dihydroxyphenylalanine-tyrosine mixtures. J Biol Chem. 1937;118:531–7.Google Scholar
  16. 16.
    Emery T, Neilands JB. Further observations concerning the periodic acid oxidation of hydroxylamines derivatives. J Org Chem. 1962;27:1075–7.CrossRefGoogle Scholar
  17. 17.
    Laemmli UK. Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature. 1970;227:680–5.CrossRefPubMedGoogle Scholar
  18. 18.
    Lytton SD, Cabantchik ZI, Libman J, Shanzer A. Reversed siderophores as antimalarial agents. II. Selective scavenging of Fe(III) from parasitized erythrocytes by a fluorescent derivative of desferal. Mol Pharmacol. 1991;40:584–90.PubMedGoogle Scholar
  19. 19.
    Lewis RE, Pongas GN, Albert N, Ben-Ami R, Walsh TJ, Kontoyiannis DP. Activity of deferasirox in Mucorales: influences of species and exogenous iron. Antimicrob Agents Chemother. 2011;55:411–3.CrossRefPubMedGoogle Scholar
  20. 20.
    Thieken A, Winkelmann G. Rhizoferrin: a complexone type siderophore of the Mucorales and entomophthorales (Zygomycetes). FEMS Microbiol Lett. 1992;73:37–41.CrossRefPubMedGoogle Scholar
  21. 21.
    De Locht M, Boelaert JR, Schneider YJ. Iron uptake from ferrioxamine and from ferrirhizoferrin by germinating spores of Rhizopus microsporus. Biochem Pharmacol. 1994;47:1843–50.CrossRefPubMedGoogle Scholar
  22. 22.
    Chayakulkeeree M, Ghannoum MA, Perfect JR. Zygomycosis: the re-emerging fungal infection. Eur J Clin Microbiol Infect Dis. 2006;25:215–29.CrossRefPubMedGoogle Scholar
  23. 23.
    Smith JA, Kauffman CA. Pulmonary fungal infections. Respirology. 2012;17:913–26.CrossRefPubMedGoogle Scholar
  24. 24.
    Holzberg M, Artis WM. Hydroxamate siderophore production by opportunistic and systemic fungal pathogens. Infect Immun. 1983;40:1134–9.PubMedGoogle Scholar
  25. 25.
    Mezence MIB, Boiron P. Studies on siderophore production and effect of iron deprivation on the outer membrane proteins of Madurella mycetomatis. Curr Microbiol. 1995;31:220–3.CrossRefPubMedGoogle Scholar
  26. 26.
    Lesuisse E, Labbe P. Reductive iron assimilation in Saccharomyces cerevisiae. In: Winkelmann G, Winge DR, editors. Metal ions in fungi. New York: Marcel Dekker Inc; 1994. p. 149–78.Google Scholar
  27. 27.
    Knight SAB, Lesuisse E, Stearman R, Klausner RD, Dancis A. Reductive iron uptake by Candida albicans: role of copper, iron and the TUP1 regulator. Microbiology. 2002;148:29–40.PubMedGoogle Scholar
  28. 28.
    Van der Helm D, Winkelmann G. Hydroxamates and polycarboxylates as iron transport agents (siderophores) in fungi. In: Winkelmann G, Winge DR, editors. Metal ions in fungi. New York: Marcel Dekker Inc; 1994. p. 39–98.Google Scholar
  29. 29.
    Drechsel H, Metzger J, Freund S, Jung G, Boelaert JR, Winkelmann G. Rhizoferrin—a novel siderophore from the fungus Rhizopus microsporus var. rhizopodiformis. Biol Met. 1991;4:238–43.CrossRefGoogle Scholar
  30. 30.
    Niimi O, Kokan A, Kashiwagi N. Effect of deferoxamine mesylate on the growth of Mucorales. Nephron. 1989;53:281–2.CrossRefPubMedGoogle Scholar
  31. 31.
    Van Cutsem J, Boelaert JR. Effects of deferoxamine, feroxamine and iron on experimental mucormycosis (zygomycosis). Kidney Int. 1989;36:1061–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Verdonck AK, Boelaert JR, Gordts BZ, Landuyt HW. Effect of ferrioxamine on the growth of Rhizopus. Mycoses. 1993;36:9–12.CrossRefPubMedGoogle Scholar
  33. 33.
    Ardon O, Nudelman R, Caris C, Libman J, Shanzer A, Chen Y, Hadar Y. Iron uptake in Ustilago maydis: tracking the iron path. J Bacteriol. 1998;180:2021–6.PubMedGoogle Scholar
  34. 34.
    Fu Y, Lee H, Collins M, Tsai HF, Spellberg B, Edwards JE Jr, Kwon-Chung KJ, Ibrahim AS. Cloning and functional characterization of the Rhizopus oryzae high affinity iron permease (rFTR1) gene. FEMS Microbiol Lett. 2004;235:169–76.PubMedGoogle Scholar
  35. 35.
    Howard DH. Iron gathering by zoopathogenic fungi. FEMS Immunol Med Microbiol. 2004;40:95–100.CrossRefPubMedGoogle Scholar
  36. 36.
    Kosman DJ. Molecular mechanisms of iron uptake in fungi. Mol Microbiol. 2003;47:1185–97.CrossRefPubMedGoogle Scholar
  37. 37.
    Philpott CC. Iron uptake in fungi: a system for every source. Biochem Biophys Acta. 2006;1763:636–45.CrossRefPubMedGoogle Scholar
  38. 38.
    Lesuisse E, Knight SAB, Camadro JM, Dancis A. Siderophore uptake by Candida albicans: effect of serum treatment and comparison with Saccharomyces cerevisiae. Yeast. 2002;19:329–40.CrossRefPubMedGoogle Scholar
  39. 39.
    Lesuisse E, Blaiseau PL, Dancis A, Camadro JM. Siderophore uptake and use by the yeast Saccharomyces cerevisiae. Microbiology. 2001;147:289–98.PubMedGoogle Scholar
  40. 40.
    Yun CW, Ferea T, Rashford J, Ardon O, Brown PO, Botstein D, Kaplan J, Philpott CC. Desferrioxamine-mediated iron uptake in Saccharomyces cerevisiae. J Biol Chem. 2000;275:10709–15.CrossRefPubMedGoogle Scholar
  41. 41.
    Ibrahim AS, Spellberg B, Walsh TJ, Kontoyiannis DP. Pathogenesis of mucormycosis. Clin Infect Dis. 2012;54(Suppl 1):S16–22.CrossRefPubMedGoogle Scholar
  42. 42.
    Ghosh M, Miller MJ. Design, synthesis, and biological evaluation of isocyanurate-based antifungal and macrolide antibiotic conjugates: iron transport-mediated drug delivery. Bioorg Med Chem. 1995;3:1519–25.CrossRefPubMedGoogle Scholar
  43. 43.
    Bernier G, Girijavallabhan V, Murray A, Niyaz N, Ding P, Miller MJ, Malouin F. Desketoneoenactin-siderophore conjugates for Candida: evidence of iron transport-dependent species selectivity. Antimicrob Agents Chemother. 2005;49:241–8.CrossRefPubMedGoogle Scholar
  44. 44.
    Ji C, Juárez-Hernández RE, Miller MJ. Exploiting bacterial iron acquisition: siderophore conjugates. Future Med Chem. 2012;4:297–313.CrossRefPubMedGoogle Scholar
  45. 45.
    Bertrand S, Bouchara JP, Venier MC, Richomme P, Duval O, Larcher G. N(α)-methyl coprogen B, a potential marker of the airway colonization by Scedosporium apiospermum in patients with cystic fibrosis. Med Mycol. 2010;48(Suppl 1):S98–107.CrossRefPubMedGoogle Scholar
  46. 46.
    Möllmann U, Heinisch L, Bauernfeind A, Köhler T, Ankel-Fuchs D. Siderophores as drug delivery agents: application of the “Trojan Horse” strategy. Biometals. 2009;22:615–24.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Gérald Larcher
    • 1
  • Marylène Dias
    • 2
  • Bienvenue Razafimandimby
    • 1
  • Danielle Bomal
    • 1
  • Jean-Philippe Bouchara
    • 1
    • 3
  1. 1.Groupe d’Etude des Interactions Hôte-Pathogène, UPRES-EA 3142, Institut de Biologie en Santé, IRIS, Centre Hospitalier UniversitaireL’UNAM Université, Université d’AngersAngers CédexFrance
  2. 2.Laboratoire MOLTECH-Anjou, UMR CNRS 6200L’UNAM Université, Université d’AngersAngersFrance
  3. 3.Laboratoire de Parasitologie-Mycologie, Institut de Biologie en Santé, PBHCentre Hospitalier UniversitaireAngersFrance

Personalised recommendations