Mycopathologia

, Volume 174, Issue 3, pp 203–214

Identification and Molecular Analysis of Pathogenic Yeasts in Droppings of Domestic Pigeons in Beijing, China

Article

Abstract

Feral pigeons are known as reservoirs of pathogenic yeasts that cause opportunistic infections in human. In the outskirts of Beijing, China, pigeons are more frequently raised at homes than are encountered in public areas. Many studies have focused on the presence of pathogenic yeasts in the excreta (fresh or withered) of a variety kinds of birds, pigeon crop and cloacae. One hundred and forty-three samples of fresh droppings were collected from three suburban pigeon-raising homes in an area of northern Beijing, China. The internal transcribed sequences (ITS) of all strains (except for 8 strains of Rhodotorula sp. ) were sequenced and compared with those of the databases of the National Center for Biotechnology Information website (http://www.ncbi.nlm.nih.gov) using the Basic Local Alignment Search Tool (BLAST). Yeasts representing 8 genera, Cryptococcus, Filobasidium, Rhodotorula, Candida, Debaryomyces, Saccaromyces, Trichosporon and Sporidiobolus, were identified from 120 isolates. Cryptococcus was the most prolific genera represented by eight species. The populations of yeast species isolated from fresh pigeon droppings were different among homes. Although it is well established that Cryptococcus neoformans exists mainly in old pigeon guano, several C. neoformans strains were still isolated from fresh pigeon excreta, providing a clue that live cryptococcal cells could move through the gastrointestinal tract of the pigeons. Eight genera identified from fresh droppings of domestic pigeons further confirm that pigeons serve as reservoirs, carriers and even spreaders of Cryptococcus species and other medically significant yeasts. The proportion of pathogenic yeasts in all isolates is more than 90 %.

Keywords

Internal transcribed sequence Pathogenic yeast Pigeon droppings 

References

  1. 1.
    Mattsson R, Haemig PD, Olsen B. Feral pigeons as carriers of Cryptococcus laurentii, Cryptococcus uniguttulatus and Debaryomyces hansenii. Med Mycol. 1999;37(5):367–9.Google Scholar
  2. 2.
    Costa AK, Sidrim JJ, Cordeiro RA, Brilhante RS, Monteiro AJ, Rocha MF. Urban pigeons (Columba livia) as a potential source of pathogenic yeasts: a focus on antifungal susceptibility of Cryptococcus strains in Northeast Brazil. Mycopathologia. 2010;169(3):207–13. doi:10.1007/s11046-009-9245-1.PubMedCrossRefGoogle Scholar
  3. 3.
    Chen J, Varma A, Diaz MR. Cryptococcus neoformans strains and infection in apparently immunocompetent patients, China. Emerg Infect Dis. 2008;14(5):755–62.PubMedCrossRefGoogle Scholar
  4. 4.
    Loperena-Alvarez Y, Ren P, Li X, Schoonmaker-Bopp DJ, Ruiz A, Chaturvedi V, et al. Genotypic characterization of environmental isolates of Cryptococcus gattii from Puerto Rico. Mycopathologia. 2010;170(4):279–85. doi:10.1007/s11046-010-9296-3.PubMedCrossRefGoogle Scholar
  5. 5.
    Costa Sdo P, Lazéra Mdos S, Santos W. First isolation of Cryptococcus gattii molecular type VGII and Cryptococcus neoformans molecular type VNI from environmental sources in the city of Belém, Pará, Brazil. Mem Inst Oswaldo Cruz. 2009;104(4):662–4.Google Scholar
  6. 6.
    Chee HY, Lee KB. Isolation of Cryptococcus neoformans var. grubii (serotype A) from pigeon droppings in Seoul, Korea. J Microbiol. 2005;43(5):469–72.PubMedGoogle Scholar
  7. 7.
    Bovers M, Hagen F, Kuramae EE, Hoogveld HL, Dromer F, St-Germain G, et al. AIDS patient death caused by novel Cryptococcus neoformans x C. gattii hybrid. Emerg Infect Dis. 2008;14(7):1105–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Rosario I, Soro G, Deniz S, Ferrer O, Acosta F, Padilla D, et al. Presence of C. albidus, C. laurentii and C. uniguttulatus in crop and droppings of pigeon lofts (Columba livia). Mycopathologia. 2010;169(4):315–9. doi:10.1007/s11046-009-9262-0.PubMedCrossRefGoogle Scholar
  9. 9.
    Cafarchia C, Romito D, Iatta R, Camarda A, Montagna MT, Otranto D. Role of birds of prey as carriers and spreaders of Cryptococcus neoformans and other zoonotic yeasts. Med Mycol. 2006;44(6):485–92. doi:10.1080/13693780600735452.PubMedCrossRefGoogle Scholar
  10. 10.
    McCurdy LH, Morrow JD. Infections due to non-neoformans cryptococcal species. Compr Ther. 2003;29(2–3):95–101.PubMedGoogle Scholar
  11. 11.
    Khawcharoenporn T, Apisarnthanarak A, Mundy LM. Non-neoformans cryptococcal infections: a systematic review. Infection. 2007;35(2):51–8. doi:10.1007/s15010-007-6142-8.PubMedCrossRefGoogle Scholar
  12. 12.
    Lanzafame M, De Checchi G, Parinello A, Trevenzoli M, Cattelan AM. Rhodotorula glutinis-related meningitis. J Clin Microbiol. 2001;39(1):410.PubMedCrossRefGoogle Scholar
  13. 13.
    Pan W, Liao W, Hagen F, Theelen B, Shi W, Meis JF, et al. Meningitis caused by Filobasidium uniguttulatum: case report and overview of the literature. Mycoses. 2011;. doi:10.1111/j.1439-0507.2011.02054.x.PubMedGoogle Scholar
  14. 14.
    Wagner D, Sander A, Bertz H, Finke J, Kern WV. Breakthrough invasive infection due to Debaryomyces hansenii (teleomorph Candida famata) and Scopulariopsis brevicaulis in a stem cell transplant patient receiving liposomal amphotericin B and caspofungin for suspected aspergillosis. Infection. 2005;33(5–6):397–400. doi:10.1007/s15010-005-5082-4.PubMedCrossRefGoogle Scholar
  15. 15.
    Munoz P, Bouza E, Cuenca-Estrella M, Eiros JM, Perez MJ, Sanchez-Somolinos M, et al. Saccharomyces cerevisiae fungemia: an emerging infectious disease. Clin Infect Dis. 2005;40(11):1625–34. doi:10.1086/429916.PubMedCrossRefGoogle Scholar
  16. 16.
    Rosario I, Acosta B, Colom MF. Pigeons and other birds as a reservoir for Cryptococcus spp. Rev Iberoam Micol. 2008;25(1):S13–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Mancianti F, Nardoni S, Ceccherelli R. Occurrence of yeasts in psittacines droppings from captive birds in Italy. Mycopathologia. 2002;153(3):121–4.PubMedCrossRefGoogle Scholar
  18. 18.
    Takashima M, Nakase T. Molecular phylogeny of the genus Cryptococcus and related species based on the sequences of 18S rDNA and internal transcribed spacer regions. Microbiol Cult Coll. 1999;15(2):35–47.Google Scholar
  19. 19.
    Nilsson RH, Kristiansson E, Ryberg M, Hallenberg N, Larsson KH. Intraspecific ITS variability in the kingdom fungi as expressed in the international sequence databases and its implications for molecular species identification. Evol Bioinform Online. 2008;4:193–201.PubMedGoogle Scholar
  20. 20.
    Leaw SN, Chang HC, Sun HF, Barton R, Bouchara JP, Chang TC. Identification of medically important yeast species by sequence analysis of the internal transcribed spacer regions. J Clin Microbiol. 2006;44(3):693–9. doi:10.1128/JCM.44.3.693-699.2006.PubMedCrossRefGoogle Scholar
  21. 21.
    Sugita T, Nishikawa A, Ikeda R, Shinoda T. Identification of medically relevant Trichosporon species based on sequences of internal transcribed spacer regions and construction of a database for Trichosporon identification. J Clin Microbiol. 1999;37(6):1985–93.PubMedGoogle Scholar
  22. 22.
    Li L, Wang Jc, Zhang Qq. Isolation and identification of Cryptococcus neoformans from pigeon dropping. J Clin Dermatol. 2000;29(4):4–6.Google Scholar
  23. 23.
    Chaskes S, Edberg SC, Singer JM. A DL-DOPA drop test for the identification of Cryptococcus neoformans. Mycopathologia. 1981;74(3):143–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Canteros CE, Rodero L, Rivas MC, Davel G. A rapid urease test for presumptive identification of Cryptococcus neoformans. Mycopathologia. 1996;136(1):21–3.PubMedCrossRefGoogle Scholar
  25. 25.
    Kwon-Chung KJ, Polacheck I, Bennett JE. Improved diagnostic medium for separation of Cryptococcus neoformans var. neoformans (serotypes A and D) and Cryptococcus neoformans var. gattii (serotypes B and C). J Clin Microbiol. 1982;15(3):535–7.PubMedGoogle Scholar
  26. 26.
    Lim CS, Tung CH, Rosli R, Chong PP. An alternative Candida spp. cell wall disruption method using a basic sorbitol lysis buffer and glass beads. J Microbiol Methods. 2008;75(3):576–8. doi:10.1016/j.mimet.2008.07.026.PubMedCrossRefGoogle Scholar
  27. 27.
    White T, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: a guide to methods and applications. San Diego, CA: Academic Press; 1990. p. 315–22.Google Scholar
  28. 28.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10. doi:10.1016/S0022-2836(05)80360-2.PubMedGoogle Scholar
  29. 29.
    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997;25(24):4876–82.PubMedCrossRefGoogle Scholar
  30. 30.
    Valerio E, Gadanho M, Sampaio JP. Sporobolomyces odoratus sp. nov., a new species in the Sporidiobolus ruineniae clade. FEMS Yeast Res. 2002;2(1):9–16.Google Scholar
  31. 31.
    Ferreira-Paim K, Andrade-Silva L, Mora DJ, Pedrosa AL, Rodrigues V, Silva-Vergara ML. Genotyping of Cryptococcus neoformans isolated from captive birds in Uberaba, Minas Gerais, Brazil. Mycoses. 2011;54(5). doi:10.1111/j.1439-0507.2010.01901.x.
  32. 32.
    Gonzalez-Hein G, Gonzalez-Hein J, Diaz Jarabran MC. Isolation of Cryptococcus neoformans in dry droppings of captive birds in Santiago, Chile. J Avian Med Surg. 2010;24(3):227–36.PubMedCrossRefGoogle Scholar
  33. 33.
    Quintero E, Castaneda E, Ruiz A. Environmental distribution of Cryptococcus neoformans in the department of Cundinamarca-Colombia. Rev Iberoam Micol. 2005;22(2):93–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Kobayashi CC, Souza LK, Fernandes Ode F, Silva AC, Sousa ED, et al. Characterization of Cryptococcus neoformans isolated from urban environmental sources in Goiania, Goias State, Brazil. Rev Inst Med Trop Sao Paulo. 2005;47(4):203–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Caicedo LD, Alvarez MI, Delgado M, Cardenas A. Cryptococcus neoformans in bird excreta in the city zoo of Cali, Colombia. Mycopathologia. 1999;147(3):121–4.PubMedCrossRefGoogle Scholar
  36. 36.
    Jang YH, Lee SJ, Lee JH, Chae HS, Kim SH, Choe NH. Prevalence of yeast-like fungi and evaluation of several virulence factors from feral pigeons in Seoul, Korea. Lett Appl Microbiol. 2011;52(4):367–71. doi:10.1111/j.1472-765X.2011.03009.x.PubMedCrossRefGoogle Scholar
  37. 37.
    Cordeiro RA, Brilhante RS, Pantoja LD, Moreira Filho RE, Vieira PR, Rocha MF, et al. Isolation of pathogenic yeasts in the air from hospital environments in the city of Fortaleza, northeast Brazil. Braz J Infect Dis. 2010;14(1):30–4.PubMedCrossRefGoogle Scholar
  38. 38.
    Gori K, Bjorklund MK, Canibe N, Pedersen AO, Jespersen L. Occurrence and identification of yeast species in fermented liquid feed for piglets. Microb Ecol. 2011;61(1):146–53. doi:10.1007/s00248-010-9706-6.PubMedCrossRefGoogle Scholar
  39. 39.
    Fonseca A, Scorzetti G, Fell JW. Diversity in the yeast Cryptococcus albidus and related species as revealed by ribosomal DNA sequence analysis. Can J Microbiol. 2000;46(1):7–27.PubMedCrossRefGoogle Scholar
  40. 40.
    Sugita T, Nishikawa A, Shinoda T. DNA relatedness among the three varieties of Cryptococcus albidus. J Gen Appl Microbiol. 1992;38:83–6.CrossRefGoogle Scholar
  41. 41.
    Sugita T, Takashima M, Ikeda R, Nakase T, Shinoda T. Intraspecies diversity of Cryptococcus albidus isolated from humans as revealed by sequences of the internal transcribed spacer regions. Microbiol Immunol. 2001;45(4):291–7.PubMedGoogle Scholar
  42. 42.
    Fell JW, Blatt GM, Statzell-Tallman A. Validation of the basidiomycetous yeast, Sporidiobolus microsporus sp. nov., based on phenotypic and molecular analyses. Antonie Van Leeuwenhoek. 1998;74(4):265–70.PubMedCrossRefGoogle Scholar
  43. 43.
    Gadanho M, Sampaio JP, Spencer-Martins I. Polyphasic taxonomy of the basidiomycetous yeast genus Rhodosporidium: R. azoricum sp. nov. Can J Microbiol. 2001;47(3):213–21.PubMedGoogle Scholar
  44. 44.
    Chang HC, Leaw SN, Huang AH, Wu TL, Chang TC. Rapid identification of yeasts in positive blood cultures by a multiplex PCR method. J Clin Microbiol. 2001;39(10):3466–71. doi:10.1128/JCM.39.10.3466-3471.2001.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Yuan Wu
    • 1
  • Peng-Cheng Du
    • 1
  • Wen-Ge Li
    • 1
  • Jin-Xing Lu
    • 1
  1. 1.National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and PreventionState Key Laboratory for Infectious Disease Prevention and ControlBeijingPeople’s Republic of China

Personalised recommendations