Mycopathologia

, Volume 174, Issue 2, pp 143–147

Molecular Identification and Antifungal Susceptibilities of Black Aspergillus Isolates from Otomycosis Cases in Hungary

  • Gyöngyi Szigeti
  • Sándor Kocsubé
  • Ilona Dóczi
  • László Bereczki
  • Csaba Vágvölgyi
  • János Varga
Article

Abstract

Otomycosis, also known as fungal otitis externa, has been used to describe a fungal infection of the external auditory canal, but sometimes involving the middle ear. Many fungal species have been identified as infectious agents in otomycosis, with Aspergillus and Candida species being the most common. Among aspergilli, Aspergillus niger is the most commonly described species in the literature. In this study, 14 black Aspergillus strains were analyzed, which were isolated from otomycosis cases in Hungary between 2010 and 2011. These strains were identified as A. niger according to conventional morphological methods. Species identification was based on sequencing of part of the calmodulin gene. Our results indicate that instead of A. niger, A. awamori and A. tubingensis are the predominant species that cause ear infections in Southern Hungary. Antifungal susceptibility tests were carried out against four antifungal drugs: amphotericin B, itraconazole, ketoconazole and terbinafine. All isolates were found to exhibit low in vitro MIC values to amphotericin B, terbinafine and itraconazole. However, the examined isolates exhibited high in vitro MIC values to ketoconazole.

Keywords

Otomycosis Black aspergilli Molecular identification Antifungal agents 

References

  1. 1.
    Munguia R, Daniel SJ. Ototopical antifungals and otomycosis: a review. Int J Pediatr Otorhinolaryngol. 2008;72:453–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Bonifaz A, Chavolla-Magana R, Araiza J. Aspergillus otitis. In: Pasqualotto AC, editor. Aspergillosis: from diagnosis to prevention. Dordrecht: Springer; 2010. 7:999–1006.Google Scholar
  3. 3.
    Fasunla J, Ibekwe T, Onakoya P. Otomycosis in western Nigeria. Mycoses. 2007;51:67–70.Google Scholar
  4. 4.
    Ozcan KM, Ozcan M, Karaarslan A, Karaarslan F. Otomycosis in Turkey: predisposing factors, etiology and therapy. J Laryngol Otol. 2003;117:39–42.PubMedCrossRefGoogle Scholar
  5. 5.
    Samson RA, Noonim P, Meijer M, Houbraken J, Frisvad JC, Varga J. Diagnostic tools to identify black aspergilli. Stud Mycol. 2007;59:129–45.PubMedCrossRefGoogle Scholar
  6. 6.
    Alcazar-Fuoli L, Mellado E, Aalastruey-Izquierdo A, Cuenca-Estrella M, Rodriguez-Tudela JL. Species identification and antifungal susceptibility patterns of species belonging to Aspergillus section Nigri. Antimicrob Agents Chemother. 2009;53:4514–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Balajee SA, Kano R, Baddley JW, Moser SA, Marr KA, Alexander BD, Andes D, Kontoyiannis DP, Perrone G, Peterson S, Brandt ME, Pappas PG, Chiller T. Molecular identification of Aspergillus species: transplant associated infection surveillance network (TRANSNET). J Clin Microbiol. 2009;47:3138–41.PubMedCrossRefGoogle Scholar
  8. 8.
    Howard SJ, Harrison E, Bowyer P, Denning DW. Molecular identification of clinical black Aspergillus isolates and azole resistance. In: 3rd Advances Against Aspergillosis Conference, 16–18 January 2008, Miami, USA, 2008; 29 (Abstract Book). San Diego, CA: University of California San Diego School of Medicine.Google Scholar
  9. 9.
    Varga J, Frisvad JC, Kocsubé S, Brankovics B, Tóth B, Szigeti G, Samson RA. New and revisited species in Aspergillus section Nigri. Stud Mycol. 2011;69:1–17.PubMedCrossRefGoogle Scholar
  10. 10.
    Balajee SA, Houbraken J, Verweij PE, Hong SB, Yaghuchi T, Varga J, Samson RA. Aspergillus species identification in the clinical setting. Stud Mycol. 2007;59:39–46.PubMedCrossRefGoogle Scholar
  11. 11.
    Szigeti G, Sedaghati E, Zare R, Kocsubé S, Vágvölgyi C, Varga J. Species assignment and antifungal susceptibilities of black aspergilli recovered from otomycosis cases in Iran. Mycoses. 2012. doi:10.1111/j.1439-0507.2011.02103.x.
  12. 12.
    Aktas E, Yigit N. Determination of antifungal susceptibility of Aspergillus spp. responsible for otomycosis by E-test method. J Mycol Med. 2009;19:122–5.CrossRefGoogle Scholar
  13. 13.
    Hong SB, Cho HS, Shin HD, Frisvad JC, Samson RA. Novel Neosartorya species isolated from soil in Korea. Int J Syst Evol Microbiol. 2006;56:477–86.PubMedCrossRefGoogle Scholar
  14. 14.
    Hillis DM, Bull JJ. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol. 1993;42:182–92.Google Scholar
  15. 15.
    NCCLS. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi. Approved standard, Document M38-A. National Committee for Clinical Laboratory Standards, Wayne, PA; 2002.Google Scholar
  16. 16.
    Perrone G, Stea G, Epifani F, Varga J, Frisvad JC, Samson RA. Aspergillus niger contains the cryptic phylogenetic species A. awamori. Fungal Biol. 2011;115:1138–50.PubMedCrossRefGoogle Scholar
  17. 17.
    Yenisehirli G, Bulut Y, Güven M, Günday E. In vitro activities of fluconazole, itraconazole and voriconazole against otomycotic fungal pathogens. J Laryng Otal. 2009;123:978–81.CrossRefGoogle Scholar
  18. 18.
    Karaarslan A, Arikan S, Ozcan M, Ozcan KM. In vitro activity of terbinafine and itraconazole against Aspergillus species isolated from otomycosis. Mycoses. 2004;47:284–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Rath P. Susceptibility of Aspergillus strains from culture collections to amphotericin B and itraconazole. J Antimicrob Chemother. 1998;41:567–70.PubMedCrossRefGoogle Scholar
  20. 20.
    Kaya A, Kiraz N. In vitro susceptibilities of Aspergillus spp. causing otomycosis to amphotericin B, voriconazole and itraconazole. Mycoses. 2007;50:447–50.PubMedCrossRefGoogle Scholar
  21. 21.
    Pagiotti R, Angelini P, Rubini A, Tirillini B, Granetti B. Venanzoni. Identification and characterisation of human pathogenic filamentous fungi and susceptibility to Thymus schimperi essential oil. Mycoses. 2011;54:e364–76.PubMedCrossRefGoogle Scholar
  22. 22.
    Moore CB, Walls CM, Denning DW. In vitro activities of terbinafine against Aspergillus species in comparison with those of itraconazole and amphotericin B. Antimicrob Agents Chemother. 2001;45:1882–18855.PubMedCrossRefGoogle Scholar
  23. 23.
    Schmitt HJ, Bernard EM, Andrade J, Edwards F, Schmitt B, Armstrong D. MIC and fungicidal activity of terbinafine against clinical isolates of Aspergillus spp. Antimicrob Agents Chemother. 1988;32:780–1.PubMedCrossRefGoogle Scholar
  24. 24.
    Howard SJ, Harrison E, Bowyer P, Varga J, Denning DW. Cryptic species and azole resistance in the Aspergillus niger complex. Antimicrob Agents Chemother. 2011;55:4802–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Gyöngyi Szigeti
    • 1
  • Sándor Kocsubé
    • 1
  • Ilona Dóczi
    • 2
  • László Bereczki
    • 2
  • Csaba Vágvölgyi
    • 1
  • János Varga
    • 1
  1. 1.Department of Microbiology, Faculty of Science & InformaticsUniversity of SzegedSzegedHungary
  2. 2.Department of Clinical Microbiology, Faculty of MedicineUniversity of SzegedSzegedHungary

Personalised recommendations