, Volume 173, Issue 5–6, pp 311–319 | Cite as

A Decade of Experience: Cryptococcus gattii in British Columbia

  • Karen H. Bartlett
  • Po-Yan Cheng
  • Colleen Duncan
  • Eleni Galanis
  • Linda Hoang
  • Sarah Kidd
  • Min-Kuang Lee
  • Sally Lester
  • Laura MacDougall
  • Sunny Mak
  • Muhammad Morshed
  • Marsha Taylor
  • James Kronstad


It has been over a decade since Cryptococcus gattii was first recognized as the causative organism of an outbreak of cryptococcosis on Vancouver Island, British Columbia. A number of novel observations have been associated with the study of this emergent pathogen. A novel genotype of C. gattii, VGIIa was described as the major genotype associated with clinical disease. Minor genotypes, VGIIb and VGI, are also responsible for disease in British Columbians, in both human and animal populations. The clinical major genotype VGIIa and minor genotype VGIIb are identical to C. gattii isolated from the environment of Vancouver Island. There is more heterogeneity in VGI, and a clear association with the environment is not apparent. Between 1999 and 2010, there have been 281 cases of C. gattii cryptococcosis. Risk factors for infection are reported to be age greater than 50 years, history of smoking, corticosteroid use, HIV infection, and history of cancer or chronic lung disease. The major C. gattii genotype VGIIa is as virulent in mice as the model Cryptococcus, H99 C. neoformans, although the outbreak strain produces a less protective inflammatory response in C57BL/6 mice. The minor genotype VGIIb is significantly less virulent in mouse models. Cryptococcus gattii is found associated with native trees and soil on Vancouver Island. Transiently positive isolations have been made from air and water. An ecological niche for this organism is associated within a limited biogeoclimatic zone characterized by daily average winter temperatures above freezing.


Cryptococcus gattii Environmental hygiene Epidemiology Pathogenic factors Genotyping VGII 


  1. 1.
    Stephen C, Lester S, Black W, Fyfe M, Raverty S. Multispecies outbreak of cryptococcosis on southern Vancouver Island, British Columbia. Can Vet J. 2002;43:792–4.PubMedGoogle Scholar
  2. 2.
    Mitchell TG, Litvintseva AP. Typing species of Cryptococcus and epidemiology of cryptococcosis. In: Ashbee HR, Bignell EM, editors. Pathogenic yeasts. Berlin, Germany: Springer-Verlag; 2010. p. 167–90.CrossRefGoogle Scholar
  3. 3.
    Byrnes EJ III, Li W, Lewit Y, Ma H, Voelz K, Ren P et al. Emergence and pathogenicity of highly virulent Cryptococcus gattii genotypes in the northwest United States. PLoS Pathog. 2010;6:e10000850.Google Scholar
  4. 4.
    Kidd SE, Chow Y, Mak S, Bach PJ, Chen H, Hingston A et al. Characterization of environmental sources of Cryptococcus gattii in British Columbia, Canada, and the Pacific Northwest. Appl Environ Microbiol. 2007;73:1433–43.Google Scholar
  5. 5.
    Lee M-K, Man S, Balbimie A, Mithani S, Wong Q, Al-Okally D et al. Multi-locus sequence typing of coastal Pacific Northwest Cryptococcus isolates. Infectious disease society of America. 48th Annual Meeting, Vancouver BC; 2010.Google Scholar
  6. 6.
    Galanis E, MacDougall L. Epidemiology of Cryptococcus gattii, British Columbia, Canada, 1999–2007. Emerg Infect Dis. 2010;16:251–7.PubMedGoogle Scholar
  7. 7.
    MacDougall L, Fyfe M. Emergence of Cryptococcus gattii in a novel environment provides clues to its incubation period. J Clin Microbiol. 2006;44:1851–2.PubMedCrossRefGoogle Scholar
  8. 8.
    MacDougall L, Fyfe M, Romney M, Starr M, Galanis E. Risk factors for Cryptococcus gattii infection, British Columbia, Canada. Emerg Infect Dis. 2011;17:193–9.PubMedGoogle Scholar
  9. 9.
    Meyer W, Aanensen DM, Boekhout T, Cogliati M, Diaz MR, Esposto MC et al. Consensus multi-locus sequence typing scheme for Cryptococcus neoformans and Cryptococcus gattii. Med Mycol. 2009;47:561–70.Google Scholar
  10. 10.
    Kidd SE, Hagen F, Tscharke M, Huynh M, Bartlett KH, Fyfe M et al. A rare genotype of Cryptococcus gattii caused the cryptococcosis outbreak on Vancouver Island (British Columbia, Canada). Proc Natl Acad Sci USA. 2004;101:17258–63.Google Scholar
  11. 11.
    Kidd SE, Guo H, Bartlett KH, Kronstad JW, Xu J. Comparative gene genealogies indicate that two clonal lineages of Cryptococcus gattii in British Columbia resemble strains from other geographical areas. Eucaryotic Cell. 2005;4:1629–38.CrossRefGoogle Scholar
  12. 12.
    Lee M-K, Man S, Balbimie A, Mithani S, Wong Q, Zabek E et al. Molecular characteristics of Cryptococcus isolates from marine mammals stranded along the Pacific. Infectious disease society of America. 48th Annual Meeting, Vancouver BC; 2010b.Google Scholar
  13. 13.
    Fraser JA, Giles SS, Wenink EC, Geunes-Boyer SG, Wright JR, Diezmann S et al. Same-sex mating and the origin of the Vancouver Island Cryptococcus gattii outbreak. Nature. 2005;437:1360–4.Google Scholar
  14. 14.
    Mak S. Ecological niche modeling of Cryptococcus gattii in British Columbia, Canada. MSc thesis. Department of geography, University of British Columbia, Vancouver, Canada; 2007.Google Scholar
  15. 15.
    Mak S, Klinkenberg B, Bartlett K, Fyfe M. Ecological niche modelling of Cryptococcus gattii in British Columbia, Canada. Environ Health Perspect. 2010;118:653–8. doi: 10.1289/ehp.0901448.PubMedCrossRefGoogle Scholar
  16. 16.
    Meidinger D, Pojar D. Special report series 6: ecosystems of British Columbia. British Columbia Ministry of Forests; 1991. Accessed 24 June 2011.
  17. 17.
    MacDougall L, Kidd SE, Galanis E, Mak S, Leslie MJ, Cieslak PR et al. Spread of Cryptococcus gattii in British Columbia, Canada, and detection in the Pacific Northwest, USA. Emerg Infect Dis. 2007;13:42–50.Google Scholar
  18. 18.
    Lindberg J, Hagen F, Laursen A, Stenderup J, Boekhout T. Cryptococcus gattii risk for tourist visiting Vancouver Island, Canada. Emerg Infect Dis. 2007;13:178–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Georgi A, Schneemann M, Tintelnot K, Callgaris-Malbach RC, Meyer S, Weber R et al. Cryptococcus gattii meningoencephalitis in an immunocompetent person 13 months after exposure. Infection. 2009;37:370–3.Google Scholar
  20. 20.
    Lester S, Malik R, Bartlett K, Duncan C. Cryptococcosis: update and emergence of Cryptococcus gattii. Vet Clin Pathol. 2011;40:4–17.PubMedCrossRefGoogle Scholar
  21. 21.
    Lester S, Kowalewich N, Bartlett KH, Krockenberger MB, Fairfax TM, Malik R. Clinicopathologic features of cryptococcosis in dogs, cats, ferrets, and a bird: 38 cases (January to July 2003). J Am Vet Med Assoc. 2004;225:1716–22.Google Scholar
  22. 22.
    Duncan C, Stephen C, Campbell J. Clinical characteristics and predictors of mortality for Cryptococcus gattii infection in dogs and cars of southwestern British Columbia. Can Vet J. 2006;47:993–8.PubMedGoogle Scholar
  23. 23.
    Duncan CG, Stephen C, Campbell J. Evaluation of risk factors for Cryptococcus gattii infection in dogs and cats. J Am Vet Med Assoc. 2006;228:377–82.PubMedCrossRefGoogle Scholar
  24. 24.
    Trivedi SR, Malik R, Meyer W, Sykes JE. Feline cryptococcosis: impact of current research on clinical management. J Feline Med Surg. 2011;13:163–72.PubMedCrossRefGoogle Scholar
  25. 25.
    Chong HS, Dagg R, Malik R, Chen S, Carter D. In vitro susceptibility of the yeast pathogen Cryptococcus to fluconazole and other azoles varies with molecular genotype. J Clin Microbiol. 2010;48:4115–20.PubMedCrossRefGoogle Scholar
  26. 26.
    Duncan C, Bartlett KH, Lester S, Bobsien B, Campbell J, Stephen C et al. Surveillance for Cryptococcus gattii in horses of Vancouver Island, British Columbia, Canada. Med Mycol; 2011. doi:  10.3109/13693786.2011.560196.
  27. 27.
    Iqbal N, DeBess EE, Wohrle R, Sun B, Nett RJ, Ahlquist AM et al. Correlation of genotype and in vitro susceptibilities of Cryptococcus gattii strains from the Pacific Northwest of the United States. J Clin Microbiol. 2010;48:539–44.Google Scholar
  28. 28.
    Norman SA, Raverty S, Zabek E, Etheridge S, Ford JK, Hoang LM et al. Maternal-Fetal transmission of Cryptococcus gattii in Harbor Porpoise. Emerg Infect Dis. 2011;17:304–5.Google Scholar
  29. 29.
    Cheng P-Y, Sham A, Kronstad JW. Cryptococcus gattii isolates from the British Columbia cryptococcosis outbreak induce less protective inflammation in a murine model of infection than Cryptococcus neoformans. Infect Immun. 2009;77:4284–94.PubMedCrossRefGoogle Scholar
  30. 30.
    Dong ZM, Murphy JW. Effects of the two varieties of Cryptococcus neoformans cells and culture filtrate antigens on neutrophil locomotion. Infect Immun. 1995;63:2632–44.PubMedGoogle Scholar
  31. 31.
    Wright L, Bubb W, Davidson J, Santangelo R, Krockenberger M, Himmelreich U et al. Metabolites released by Cryptococcus neoformans var. neoformans and var. gattii differentially affect human neutrophil function. Microb Infect. 2002;4:1427–38.Google Scholar
  32. 32.
    Shoham S, Levitz SM. The immune response to fungal infections. Br J Haematol. 2005;129:569–82.PubMedCrossRefGoogle Scholar
  33. 33.
    Wormley FL Jr, Cox GM, Perfect JR. Evaluation of host immune responses to pulmonary cryptococcosis using a temperature-sensitive C. neoformans calcineurin A mutant strain. Microb Pathog. 2005;38:113–23.PubMedCrossRefGoogle Scholar
  34. 34.
    Chen GH, McNamara DA, Hernandez Y, Huffnagle GB, Toews GB, Olszewski MA. Inheritance of immune polarization patterns is linked to resistance versus susceptibility to Cryptococcus neoformans in a mouse model. Infect Immun. 2008;76:2379–91.PubMedCrossRefGoogle Scholar
  35. 35.
    Osterholzer JJ, Curtis JL, Polak T, Ames T, Chen GH, McDonald R et al. CCR2 mediates conventional dendritic cell recruitment and the formation of bronchovascular mononuclear cell infiltrates in the lungs of mice infected with Cryptococcus neoformans. J Immunol. 2008;181:610–20.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Karen H. Bartlett
    • 1
  • Po-Yan Cheng
    • 2
    • 3
  • Colleen Duncan
    • 4
  • Eleni Galanis
    • 5
  • Linda Hoang
    • 6
  • Sarah Kidd
    • 7
  • Min-Kuang Lee
    • 6
  • Sally Lester
    • 8
  • Laura MacDougall
    • 9
  • Sunny Mak
    • 5
  • Muhammad Morshed
    • 6
  • Marsha Taylor
    • 5
  • James Kronstad
    • 2
    • 3
  1. 1.School of Population and Public HealthUniversity of British ColumbiaVancouverCanada
  2. 2.Microbiology and ImmunologyUniversity of British ColumbiaVancouverCanada
  3. 3.Michael Smith LaboratoriesUniversity of British ColumbiaVancouverCanada
  4. 4.Veterinary Diagnostic LaboratoryColorado State UniversityColoradoUSA
  5. 5.Epidemiology SectionBritish Columbia Centre for Disease ControlVancouverCanada
  6. 6.Laboratory ServicesBritish Columbia Centre for Disease ControlVancouverCanada
  7. 7.Mycology UnitWomen’s and Children’s HospitalAdelaideAustralia
  8. 8.True North Veterinary DiagnosticsLangleyCanada
  9. 9.British Columbia Centre for Disease ControlVancouverCanada

Personalised recommendations