Mycopathologia

, 172:331 | Cite as

Transcriptomic and Proteomic Profile of Aspergillus fumigatus on Exposure to Artemisinin

  • Poonam Gautam
  • Santosh Kumar Upadhyay
  • Wazid Hassan
  • Taruna Madan
  • Ravi Sirdeshmukh
  • Curam Sreenivasacharlu Sundaram
  • Wasudev Namdeo Gade
  • Seemi Farhat Basir
  • Yogendra Singh
  • Puranam Usha Sarma
Article

Abstract

Artemisinin, an antimalarial drug, and its derivatives are reported to have antifungal activity against some fungi. We report its antifungal activity against Aspergillus fumigatus (A. fumigatus), a pathogenic filamentous fungus responsible for allergic and invasive aspergillosis in humans, and its synergistic effect in combination with itraconazole (ITC), an available antifungal drug. In order to identify its molecular targets, we further analyzed transcript and proteomic profiles of the fungus on exposure to the artemisinin. In transcriptomic analysis, a total of 745 genes were observed to be modulated on exposure to artemisinin, and some of them were confirmed by real-time polymerase chain reaction analysis. Proteomic profiles of A. fumigatus treated with artemisinin showed modulation of 175 proteins (66 upregulated and 109 downregulated) as compared to the control. Peptide mass fingerprinting led to the identification of 85 proteins—29 upregulated and 56 downregulated, 65 of which were unique proteins. Consistent with earlier reports of molecular mechanisms of artemisinin and that of other antifungal drugs, we believe that oxidative phosphorylation pathway (64 kDa mitochondrial NADH dehydrogenase), cell wall-associated proteins and enzymes (conidial hydrophobin B protein, cell wall phiA protein, extracellular thaumatin domain protein, 1,3-beta-glucanosyltransferase Gel2) and genes involved in ergosterol biosynthesis (ERG6 and coproporphyrinogen III oxidase, HEM13) are potential targets of artemisinin for further investigations.

Keywords

Aspergillus fumigatus Artemisinin Microarray Proteomics 

Supplementary material

11046_2011_9445_MOESM1_ESM.doc (36 kb)
Supplementary material 1 (DOC 36 kb)
11046_2011_9445_MOESM2_ESM.xls (126 kb)
Supplementary material 2 (XLS 126 kb)
11046_2011_9445_MOESM3_ESM.xls (48 kb)
Supplementary material 3 (XLS 48 kb)
11046_2011_9445_MOESM4_ESM.xls (62 kb)
Supplementary material 4 (XLS 62 kb)
11046_2011_9445_MOESM5_ESM.doc (82 kb)
Supplementary material 5 (DOC 82 kb)
11046_2011_9445_MOESM6_ESM.ppt (152 kb)
Supplementary material 6 (PPT 152 kb)

References

  1. 1.
    Brakhage AA. Systemic fungal infections caused by Aspergillus species: epidemiology, infection process and virulence determinants. Current Drug Targets. 2005;6(8):875–86.PubMedCrossRefGoogle Scholar
  2. 2.
    Pfaller MA, Pappas PG, Wingard JR. Invasive fungal pathogens: current epidemiological trends. Clin Infect Dis. 2006;43:S3–14.CrossRefGoogle Scholar
  3. 3.
    Ellis D. Amphotericin B: spectrum and resistance. J Antimicrob Chemother. 2002;9:7–10.Google Scholar
  4. 4.
    Kontoyiannis DP, Lewis RE. Antifungal drug resistance of pathogenic fungi. Lancet. 2002;359:1135–44.PubMedCrossRefGoogle Scholar
  5. 5.
    Tan RX, Lu H, Wolfender JL, Yu TT, Zheng WF, Yang L, Gafner S, Hostettmann K. Mono- and sesquiterpenes and antifungal constituents from Artemisia species. Planta Med. 1999;65(1):64–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Galal AM, Ross SA, Jacob M, ElSohly MA. Antifungal activity of artemisinin derivatives. J Nat Prod. 2005;68(8):1274–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Dhingra V, Pakki SR, Narasu ML. Antimicrobial activity of artemisinin and its precursors. Curr Sci. 2000;78(6):709–13.Google Scholar
  8. 8.
    Pandey AV, Tekwani BL, Singh RL, Chauhan VS. Artemisinin, an endoperoxide antimalarial, disrupts the hemoglobin catabolism and heme detoxification systems in malarial parasite. J Biol Chem. 1999;274(27):19383–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Francis SE, Gluzman IY, Oksman A, Knickerbocker A, Mueller R, Bryant ML, Sherman DR, Russell DG, Goldberg DE. Molecular characterization and inhibition of a Plasmodium falciparum aspartic hemoglobinase. EMBO J. 1994;13(2):306–17.PubMedGoogle Scholar
  10. 10.
    Salas F, Fichmann J, Lee GK, Scott MD, Rosenthal PJ. Functional expression of falcipain, a Plasmodium falciparum cysteine proteinase, supports its role as a malarial hemoglobinase. Infect Immun. 1995;63(6):2120–5.PubMedGoogle Scholar
  11. 11.
    Gluzman IY, Francis SE, Oksman A, Smith CE, Duffin KL, Goldberg DE. Order and specificity of the Plasmodium falciparum hemoglobin degradation pathway. J Clin Invest. 1994;93(4):1602–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Francis SE, Sullivan DJ Jr, Goldberg DE. Hemoglobin metabolism in the malaria parasite Plasmodium falciparum. Annu Rev Microbiol. 1997;51:97–123. Review.PubMedCrossRefGoogle Scholar
  13. 13.
    Schwarzer E, Turrini F, Ulliers D, Giribaldi G, Ginsburg H, Arese P. Impairment of macrophage functions after ingestion of Plasmodium falciparum-infected erythrocytes or isolated malarial pigment. J Exp Med. 1992;176(4):1033–41.PubMedCrossRefGoogle Scholar
  14. 14.
    Vander Jagt DL, Hunsaker LA, Campos NM. Characterization of a hemoglobin-degrading, low molecular weight protease from Plasmodium falciparum. Mol Biochem Parasitol. 1986;18(3):389–400.PubMedCrossRefGoogle Scholar
  15. 15.
    Vander Jagt DL, Hunsaker LA, Campos NM, Scaletti JV. Localization and characterization of hemoglobin-degrading aspartic proteinases from the malarial parasite Plasmodium falciparum. Biochim Biophys Acta. 1992;1122(3):256–64.PubMedCrossRefGoogle Scholar
  16. 16.
    Sherry BA, Alava G, Tracey KJ, Martiney J, Cerami A, Slater AF. Malaria-specific metabolite hemozoin mediates the release of several potent endogenous pyrogens (TNF, MIP-1 alpha, and MIP-1 beta) in vitro, and altered thermoregulation in vivo. J Inflamm. 1995;45(2):85–96.PubMedGoogle Scholar
  17. 17.
    Eckstein-Ludwig U, Webb RJ, Van Goethem ID, East JM, Lee AG, Kimura M, O’Neill PM, Bray PG, Ward SA, Krishna S. Artemisinins target the SERCA of Plasmodium falciparum. Nature. 2003;424(6951):957–61.PubMedCrossRefGoogle Scholar
  18. 18.
    Li W, Mo W, Shen D, Sun L, Wang J, Lu S, Gitschier JM, Zhou B. Yeast model uncovers dual roles of mitochondria in action of artemisinin. PLoS Genet. 2005;1(3):e36.PubMedCrossRefGoogle Scholar
  19. 19.
    Wang J, Huang L, Li J, Fan Q, Long Y, Li Y, Zhou B. Artemisinin directly targets malarial mitochondria through its specific mitochondrial activation. PLoS One. 2010;5(3):e9582.PubMedCrossRefGoogle Scholar
  20. 20.
    Gautam P, Shankar J, Madan T, Sirdeshmukh R, Sundaram CS, Gade WN, Basir SF, Sarma PU. Proteomic and transcriptomic analysis of Aspergillus fumigatus on exposure to amphotericin B. Antimicrob Agents Chemother. 2008;52(12):4220–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Arikan S, Lozano-Chiu M, Paetznick V, Nangia S, Rex JH. Microdilution susceptibility testing of amphotericin B, itraconazole, and voriconazole against clinical isolates of Aspergillus and Fusarium species. J Clin Microbiol. 1999;37(12):3946–51.PubMedGoogle Scholar
  22. 22.
    Mosquera J, Sharp A, Moore CB, Warn PA, Denning DW. In vitro interaction of terbinafine with itraconazole, fluconazole, amphotericin B and 5-flucytosine against Aspergillus spp. J Antimicrob Chemother. 2002;50(2):189–94.PubMedCrossRefGoogle Scholar
  23. 23.
    Vaquerizas JM, Dopazo J, Díaz-Uriarte R. DNMAD: web-based diagnosis and normalization for microarray data. Bioinformatics. 2004;20(18):3656–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Puckette MC, Tang Y, Mahalingam R. Transcriptomic changes induced by acute ozone in resistant and sensitive Medicago truncatula accessions. BMC Plant Biol. 2008;4(8):46.CrossRefGoogle Scholar
  25. 25.
    Semighini CP, Marins M, Goldman MHS, Goldman GH. Quantitative analysis of the relative transcript levels of ABC transporter Atr genes in Aspergillus nidulans by real-time reverse transcription-PCR assay. Appl Environ Microbiol. 2002;3:1351–7.CrossRefGoogle Scholar
  26. 26.
    Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.PubMedCrossRefGoogle Scholar
  27. 27.
    Görg A, Postel W, Günther S, Friedrich C. Horizontal two-dimensional electrophoresis with immobilized pH gradients using PhastSystem. Electrophoresis. 1988;9(1):57–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Chumbalkar VC, Subhashini C, Dhople VM, Sundaram CS, Jagannadham MV, Kumar KN, Srinivas PN, Mythili R, Rao MK, Kulkarni MJ, Hegde S, Hegde AS, Samual C, Santosh V, Singh L, Sirdeshmukh R. Differential protein expression in human gliomas and molecular insights. Proteomics. 2005;5(4):1167–77.PubMedCrossRefGoogle Scholar
  29. 29.
    Zhang L, Zhang Y, Zhou Y, An S, Zhou Y, Cheng J. Response of gene expression in Saccharomyces cereviseae to amphotericin B and nystatin measured by microarrays. J Antimicrob Chemother. 2002;49(6):905–15.PubMedCrossRefGoogle Scholar
  30. 30.
    Agarwal AK, Rogers PD, Baerson SR, Jacob MR, Barker KS, Cleary JD, Walker LA, Nagle DG, Clark AM. Genome-wide expression profiling of the response to polyene, pyrimidine, azole, and echinocandin antifungal agents in Saccharomyces cereviseae. J Biol Chem. 2003;278(37):34998–5015.PubMedCrossRefGoogle Scholar
  31. 31.
    Liu TT, Lee RE, Barker KS, Lee RE, Wei L, Homayouni R, Rogers PD. Genome-wide expression profiling of the response to azole, polyene, echinocandin, and pyrimidine antifungal agents in Candida albicans. Antimicrob Agents Chemother. 2005;49(6):2226–36.PubMedCrossRefGoogle Scholar
  32. 32.
    da Silva Ferreira ME, Malavazi I, Savoldi M, Brakhage AA, Goldman MH, Kim HS, Nierman WC, Goldman GH. Transcriptome analysis of Aspergillus fumigatus exposed to voriconazole. Curr Genet. 2006;50(1):32–44.PubMedCrossRefGoogle Scholar
  33. 33.
    Prieto JH, Koncarevic S, Park SK, Yates J 3rd, Becker K. Large-scale differential proteome analysis in Plasmodium falciparum under drug treatment. PLoS One. 2008;3(12):e4098.PubMedCrossRefGoogle Scholar
  34. 34.
    Yu L, Zhang W, Wang L, Yang J, Liu T, Peng J, Leng W, Chen L, Li R, Jin Q. Transcriptional profiles of the response to ketoconazole and amphotericin B in Trichophyton rubrum. Antimicrob Agents Chemother. 2007;51(1):144–53.PubMedCrossRefGoogle Scholar
  35. 35.
    Paris S, Debeaupuis JP, Crameri R, Carey M, Charles F, Prevost MC, Schmitt C, Philippe B, Latge JP. Conidial hydrophobins of Aspergillus fumigatus. Appl Environ Microbiol. 2003;69(3):1581–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Aimanianda V, Bayry J, Bozza S, Kniemeyer O, Perruccio K, Elluru SR, Clavaud C, Paris S, Brakhage AA, Kaveri SV, Romani L, Latgé JP. Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature. 2009;460(7259):1117–21.PubMedCrossRefGoogle Scholar
  37. 37.
    Upadhyay SK, Mahajan L, Ramjee S, Singh Y, Basir SF, Madan T. Identification and characterization of a laminin-binding protein of Aspergillus fumigatus: extracellular thaumatin domain protein (AfCalAp). J Med Microbiol. 2009;58(Pt 6):714–22.PubMedCrossRefGoogle Scholar
  38. 38.
    Gautam P, Sundaram CS, Madan T, Gade WN, Shah A, Sirdeshmukh R, Sarma PU. Identification of novel allergens of Aspergillus fumigatus using immunoproteomics approach. Clin Exp Allergy. 2007;37(8):1239–49.PubMedCrossRefGoogle Scholar
  39. 39.
    Mouyna I, Morelle W, Vai M, Monod M, Léchenne B, Fontaine T, Beauvais A, Sarfati J, Prévost MC, Henry C, Latgé JP. Deletion of GEL2 encoding for a beta(1–3) glucanosyltransferase affects morphogenesis and virulence in Aspergillus fumigatus. Mol Microbiol. 2005;56(6):1675–88.PubMedCrossRefGoogle Scholar
  40. 40.
    Bernard M, Latgé JP. Aspergillus fumigatus cell wall: composition and biosynthesis. Med Mycol. 2001;39(Suppl 1):9–17. Review.PubMedGoogle Scholar
  41. 41.
    De Backer MD, Ilyina T, Ma XJ, Vandoninck S, Luyten WH, Vanden Bossche H. Genomic profiling of the response of Candida albicans to itraconazole treatment using a DNA microarray. Antimicrob Agents Chemother. 2001;45(6):1660–70.PubMedCrossRefGoogle Scholar
  42. 42.
    Barker KS, Crisp S, Wiederhold N, Lewis RE, Bareither B, Eckstein J, Barbuch R, Bard M, Rogers PD. Genome-wide expression profiling reveals genes associated with amphotericin B and fluconazole resistance in experimentally induced antifungal resistant isolates of Candida albicans. J Antimicrob Chemother. 2004;54(2):376–85.PubMedCrossRefGoogle Scholar
  43. 43.
    Alcazar-Fuoli L, Mellado E, Garcia-Effron G, Buitrago MJ, Lopez JF, Grimalt JO, Cuenca-Estrella JM, Rodriguez-Tudela JL. Aspergillus fumigatus C-5 sterol desaturases Erg3A and Erg3B: role in sterol biosynthesis and antifungal drug susceptibility. Antimicrob Agents Chemother. 2006;50(2):453–60.PubMedCrossRefGoogle Scholar
  44. 44.
    Sarma PU, Kurup VP, Madan T. Immunodiagnosis of ABPA. Front Biosci. 2003;01:1187–98.CrossRefGoogle Scholar
  45. 45.
    Banerjee B, Kurup VP, Greenberger PA, Hoffman DR, Nair DS, Fink JN. Purification of a major allergen, Asp f 2 binding to IgE in allergic bronchopulmonary aspergillosis, from culture filtrate of Aspergillus fumigatus. J Allergy Clin Immunol. 1997;99:821–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Bhisutthibhan J, Pan XQ, Hossler PA, Walker DJ, Yowell CA, Carlton J, Dame JB, Meshnick SR. The Plasmodium falciparum translationally controlled tumor protein homolog and its reaction with the antimalarial drug artemisinin. J Biol Chem. 1998;273(26):16192–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Ferreira ME, Colombo AL, Paulsen I, Ren Q, Wortman J, Huang J, Goldman MH, Goldman GH. The ergosterol biosynthesis pathway, transporter genes, and azole resistance in Aspergillus fumigatus. Med Mycol. 2005;43(Suppl 1):S313–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Slaven JW, Anderson MJ, Sanglard D, Dixon GK, Bille J, Roberts IS, Denning DW. Increased expression of a novel Aspergillus fumigatus ABC transporter gene, atrF, in the presence of itraconazole in an itraconazole resistant clinical isolate. Fungal Genet Biol. 2002;36:199–206.PubMedCrossRefGoogle Scholar
  49. 49.
    Nascimento AM, Goldman GH, Park S, Marras SA, Delmas G, Oza U, Lolans K, Dudley MN, Mann PA, Perlin DS. Multiple resistance mechanisms among Aspergillus fumigatus mutants with high-level resistance to itraconazole. Antimicrob Agents Chemother. 2003;47(5):1719–26.PubMedCrossRefGoogle Scholar
  50. 50.
    Coleman JJ, Mylonakis E. Efflux in fungi: la pièce de résistance. PLoS Pathog. 2009;5(6):e1000486.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Poonam Gautam
    • 1
    • 2
    • 4
  • Santosh Kumar Upadhyay
    • 1
    • 5
  • Wazid Hassan
    • 1
  • Taruna Madan
    • 1
    • 3
  • Ravi Sirdeshmukh
    • 2
  • Curam Sreenivasacharlu Sundaram
    • 2
  • Wasudev Namdeo Gade
    • 4
  • Seemi Farhat Basir
    • 5
  • Yogendra Singh
    • 1
  • Puranam Usha Sarma
    • 1
    • 6
  1. 1.Institute for Genomics and Integrative BiologyDelhiIndia
  2. 2.Centre for Cellular and Molecular BiologyHyderabadIndia
  3. 3.Innate ImmunityNational Institute for Research in Reproductive Health (NIRRH)MumbaiIndia
  4. 4.Department of BiotechnologyUniversity of PunePuneIndia
  5. 5.Department of BiosciencesJamia Milia IslamiaDelhiIndia
  6. 6.Department of Plant PathologyIndian Agricultural Research InstituteDelhiIndia

Personalised recommendations