Advertisement

Mycopathologia

, Volume 171, Issue 5, pp 299–323 | Cite as

Fungal Proteases and Their Pathophysiological Effects

  • Iwona Yike
Article

Abstract

Proteolytic enzymes play an important role in fungal physiology and development. External digestion of protein substrates by secreted proteases is required for survival and growth of both saprophytic and pathogenic species. Extracellular serine, aspartic, and metalloproteases are considered virulence factors of many pathogenic species. New findings focus on novel membrane-associated proteases such as yapsins and ADAMs and their role in pathology. Proteases from fungi induce inflammatory responses by altering the permeability of epithelial barrier and by induction of proinflammatory cytokines through protease-activated receptors. Many fungal allergens possess proteolytic activity that appears to be essential in eliciting Th2 responses. Allergenic fungal proteases can act as adjuvants, potentiating responses to other allergens. Proteolytic enzymes from fungi contribute to inflammation through interactions with the kinin system as well as the coagulation and fibrinolytic cascades. Their effect on the host protease–antiprotease balance results from activation of endogenous proteases and degradation of protease inhibitors. Recent studies of the role of fungi in human health point to the growing importance of proteases not only as pathogenic agents in fungal infections but also in asthma, allergy, and damp building related illnesses. Proteolytic enzymes from fungi are widely used in biotechnology, mainly in food, leather, and detergent industries, in ecological bioremediation processes and to produce therapeutic peptides. The involvement of fungal proteases in diverse pathological mechanisms makes them potential targets of therapeutic intervention and candidates for biomarkers of disease and exposure.

Keywords

Fungi Proteases Allergens Th2 responses Inflammation 

References

  1. 1.
    Barrett AJ, McDonald JK. Nomenclature: protease, proteinase and peptidase. Biochem J. 1986;237:935.PubMedGoogle Scholar
  2. 2.
    Rawlings ND, Barrett AJ. Evolutionary families of peptidases. Biochem J. 1993;290:205–18.PubMedGoogle Scholar
  3. 3.
    Rawlings ND, Barrett AJ, Bateman A. MEROPS: the peptidase database. Nucleic Acids Res. 2010;38:D227–33.PubMedGoogle Scholar
  4. 4.
    Page MJ, Di Cera E. Serine peptidases: classification, structure and function. Cell Mol Life Sci. 2008;65:1220–36.PubMedGoogle Scholar
  5. 5.
    Monod M, Capoccia S, Léchenne B, Zaugg C, Holdom M, Jousson O. Secreted proteases from pathogenic fungi. Int J Med Microbiol. 2002;292:405–19.PubMedGoogle Scholar
  6. 6.
    Seemüller E, Lupas A, Stock D, Löwe J, Huber R, Baumeister W. Proteasome from Thermoplasma acidophilum: a threonine protease. Science. 1995;268:579–82.PubMedGoogle Scholar
  7. 7.
    Rawlings ND, Barrett AJ. Families of cysteine peptidases. Meth Enzymol. 1994;244:461–86.PubMedGoogle Scholar
  8. 8.
    Xu HE, Johnston SA. Yeast bleomycin hydrolase is a DNA-binding cysteine protease. Identification, purification, biochemical characterization. J Biol Chem. 1994;269:21177–83.PubMedGoogle Scholar
  9. 9.
    Futai E, Kubo T, Sorimachi H, Suzuki K, Maeda T. Molecular cloning of PalBH, a mammalian homologue of the Aspergillus atypical calpain PalB. Biochim Biophys Acta. 2001;1517:316–9.PubMedGoogle Scholar
  10. 10.
    Rawlings ND, Barrett AJ. Families of aspartic peptidases and those of unknown catalytic mechanism. Meth Enzymol. 1995;248:105–20.PubMedGoogle Scholar
  11. 11.
    Hofmann T. Penicillopepsin. In: Barrett AJ, Rawlings ND, Woessner JF, editors. Handbook of proteolytic enzymes. London: Elsevier; 2004. p. 99–104.Google Scholar
  12. 12.
    Dunn BM. Rhizopuspepsin. In: Barrett AJ, Rawlings ND, Woessner JF, editors. Handbook of proteolytic enzymes. London: Elsevier; 2004. p. 108–11.Google Scholar
  13. 13.
    Ichishima E. Aspergillopepsin I. In: Barrett AJ, Rawlings ND, Woessner JF, editors. Handbook of proteolytic enzymes. London: Elsevier; 2004. p. 92–9.Google Scholar
  14. 14.
    Gropp K, Schild L, Schindler S, Hube B, Zipfel PF, Skerka C. The yeast Candida albicans evades human complement attack by secretion of aspartic proteases. Mol Immunol. 2009;47:465–75.PubMedGoogle Scholar
  15. 15.
    Krysan DJ, Ting EL, Abeijon C, Kroos L, Fuller RS. Yapsins are a family of aspartyl proteases required for cell wall integrity in Saccharomyces cerevisiae. Eukaryot Cell. 2005;4:1364–74.PubMedGoogle Scholar
  16. 16.
    Rawlings ND, Barrett AJ. Evolutionary families of metallopeptidases. Methods Enzymol. 1995;248:183–228.PubMedGoogle Scholar
  17. 17.
    Markaryan A, Morozova I, Yu H, Kolattukudy PE. Purification and characterization of an elastinolytic metalloprotease from Aspergillus fumigatus and immunoelectron microscopic evidence of secretion of this enzyme by the fungus invading the murine lung. Infect Immun. 1994;62:2149–57.PubMedGoogle Scholar
  18. 18.
    Monod M, Jousson O, Reichard U. Aspergillus fumigatus secreted proteases. In: Latge J-P, Steinbach WJ, editors. Aspergillus fumigatus and aspergillosis. Washington, DC: ASM Press; 2009. p. 87–106.Google Scholar
  19. 19.
    Edwards DR, Handsley MM, Pennington CJ. The ADAM metalloproteinases. Mol Aspects Med. 2008;29:258–89.PubMedGoogle Scholar
  20. 20.
    Sims AH, Dunn-Coleman NS, Robson GD, Oliver SG. Glutamic protease distribution is limited to filamentous fungi. FEMS Microbiol Lett. 2004;239:95–101.PubMedGoogle Scholar
  21. 21.
    Behnsen J, Lessing F, Schindler S, Wartenberg D, Jacobsen ID, Thoen M, Zipfel PF, Brakhage AA. Secreted Aspergillus fumigatus protease Alp1 degrades human complement proteins C3, C4, and C5. Infect Immun. 2010;78:3585–94.PubMedGoogle Scholar
  22. 22.
    Jaton-Ogay K, Suter M, Crameri R, Falchetto R, Fatih A, Monod M. Nucleotide sequence of a genomic and a cDNA clone encoding an extracellular alkaline protease of Aspergillus fumigatus. FEMS Microbiol Lett. 1992;71:163–8.PubMedGoogle Scholar
  23. 23.
    Chow LP, Liu SL, Yu CJ, Liao HK, Tsai JJ, Tang TK. Identification and expression of an allergen Asp f 13 from Aspergillus fumigatus and epitope mapping using human IgE antibodies and rabbit polyclonal antibodies. Biochem J. 2000;346:423–31.PubMedGoogle Scholar
  24. 24.
    Kolattukudy PE, Lee JD, Rogers LM, Zimmerman P, Ceselski S, Fox B, Stein B, Copelan EA. Evidence for possible involvement of an elastolytic serine protease in aspergillosis. Infect Immun. 1993;61:2357–68.PubMedGoogle Scholar
  25. 25.
    Moser M, Menz G, Blaser K, Crameri R. Recombinant expression and antigenic properties of a 32-kilodalton extracellular alkaline protease, representing a possible virulence factor from Aspergillus fumigatus. Infect Immun. 1994;62:936–42.PubMedGoogle Scholar
  26. 26.
    Bank U, Krüger S, Langner J, Roessner A. Review: peptidases and peptidase inhibitors in the pathogenesis of diseases. Disturbances in the ubiquitin-mediated proteolytic system. Protease-antiprotease imbalance in inflammatory reactions. Role of cathepsins in tumor progression. Adv Exp Med Biol. 2000;477:349–78.PubMedGoogle Scholar
  27. 27.
    Schaller A. A cut above the rest: the regulatory function of plant proteases. Planta. 2004;220:183–97.PubMedGoogle Scholar
  28. 28.
    Dunaevskiĭ I, Matveeva AR, Fatkhullina GN, Beliakova GA, Kolomiets TM, Kovalenko ED, Belozerskiĭ MA. Extracellular proteases of mycelial fungi as participants of pathogenic processes. Bioorg Khim. 2008;34:317–21.PubMedGoogle Scholar
  29. 29.
    Reichard U, Cole GT, Hill TW, Rüchel R, Monod M. Molecular characterization and influence on fungal development of ALP2, a novel serine proteinase from Aspergillus fumigatus. Int J Med Microbiol. 2000;290:549–58.PubMedGoogle Scholar
  30. 30.
    Papagianni M, Moo-Young M. Protease secretion in glucoamylase producer Aspergillus niger cultures: fungal morphology and inoculum effects. Proc Biochem. 2002;37:1271–88.Google Scholar
  31. 31.
    Phadatare SU, Srinivasan MC, Deshpande VV. Evidence for controlled autoproteolysis of alkaline protease. A mechanism for physiological regulation of conidial discharge in Conidiobolus coronatus. Eur J Biochem. 1992;205:679–86.PubMedGoogle Scholar
  32. 32.
    Pei J, Grishin NV. Breaking the singleton of germination protease. Protein Sci. 2002;11:691–7.PubMedGoogle Scholar
  33. 33.
    Ramakrishna V, Rajasekhar S, Reddy LS. Identification and purification of metalloprotease from dry grass pea (Lathyrus sativus L.) seeds. Appl Biochem Biotechnol. 2010;160:63–71.PubMedGoogle Scholar
  34. 34.
    Dunaevskiĭ I, Tsybina TA, Beliakova GA, Domash VI, Shapno TP, Zabreĭko SA, Belozerskiĭ MA. Proteinase inhibitors as antistress proteins in higher plants. Prikl Biokhim Mikrobiol. 2005;41:392–6.PubMedGoogle Scholar
  35. 35.
    Green BJ, Mitakakis TZ, Tovey ER. Allergen detection from 11 fungal species before and after germination. J Allergy Clin Immunol. 2003;111:285–9.PubMedGoogle Scholar
  36. 36.
    Teutschbein J, Albrecht D, Pötsch M, Guthke R, Aimanianda V, Clavaud C, Latgé JP, Brakhage AA, Kniemeyer O. Proteome profiling and functional classification of intracellular proteins from conidia of the human-pathogenic mold Aspergillus fumigatus. J Proteome Res. 2010;9:3427–42.PubMedGoogle Scholar
  37. 37.
    Singh B, Sharma GL, Oellerich M, Kumar R, Singh S, Bhadoria DP, Katyal A, Reichard U, Asif AR. Novel cytosolic cllergens of Aspergillus fumigatus identified from germinating conidia. J Proteome Res. 2010; Oct 7. [Epub ahead of print].Google Scholar
  38. 38.
    Beggah S, Lechénne B, Reichard U, Foundling S, Monod M. Intra- and intermolecular events direct maturation of Candida albicans secreted aspartic proteinase Sap1p. Microbiology. 2000;146:2765–73.PubMedGoogle Scholar
  39. 39.
    Markaryan A, Lee JD, Sirakova TD, Kolattukudy PE. Specific inhibition of mature fungal serine proteinases and metalloproteinases by their propeptides. J Bacteriol. 1996;178:2211–5.PubMedGoogle Scholar
  40. 40.
    Pavlukova EB, Belozersky MA, Dunaevsky YE. Extracellular proteolytic enzymes of filamentous fungi. Biochemistry (Mosc). 1998;63:899–928.Google Scholar
  41. 41.
    Kredics L, Antal Z, Szekeres A, Hatvani L, Manczinger L, Vágvölgyi C, Nagy E. Extracellular proteases of Trichoderma species. Acta Microbiol Immunol Hung. 2005;52:169–84.PubMedGoogle Scholar
  42. 42.
    Chen LL, Liu LJ, Shi M, Song XY, Zheng CY, Chen XL, Zhang YZ. Characterization and gene cloning of a novel serine protease with nematicidal activity from Trichoderma pseudokoningii SMF2. FEMS Microbiol Lett. 2009;299:135–42.PubMedGoogle Scholar
  43. 43.
    St. Leger RJ, Cooper RM, Charnley AK. Distribution of chymoelastases and trypsin-like enzymes in five species of entomopathogenic deuteromycetes. Arch Biochem Biophys. 1987;258:123–31.PubMedGoogle Scholar
  44. 44.
    St. Leger RJ, Cooper RM, Charnley AK. Analysis of aminopeptidase and dipeptidylpeptidase IV from the entomopathogenic fungus Metarhizium anisopliae. J Gen Microbiol. 1993;139:237–43.PubMedGoogle Scholar
  45. 45.
    Santi L, Beys da Silva WO, Berger M, Guimarãesv JA, Schrank A, Vainstein MH. Conidial surface proteins of Metarhizium anisopliae: source of activities related with toxic effects, host penetration and pathogenesis. Toxicon. 2010;55:874–80.PubMedGoogle Scholar
  46. 46.
    Fang W, Feng J, Fan Y, Zhang Y, Bidochka MJ, Leger RJ, Pei Y. Expressing a fusion protein with protease and chitinase activities increases the virulence of the insect pathogen Beauveria bassiana. J Invertebr Pathol. 2009;102:155–9.PubMedGoogle Scholar
  47. 47.
    Qazi SS, Khachatourians GG. Addition of exogenous carbon and nitrogen sources to aphid exuviae modulates synthesis of proteases and chitinase by germinating conidia of Beauveria bassiana. Arch Microbiol. 2008;189:589–96.PubMedGoogle Scholar
  48. 48.
    Katz ME, Flynn PK, vanKuyk PA, Cheetham BF. Mutations affecting extracellular protease production in the filamentous fungus Aspergillus nidulans. Mol Gen Genet. 1996;250:715–24.PubMedGoogle Scholar
  49. 49.
    Jarai G, Buxton F. Nitrogen, carbon, and pH regulation of extracellular acidic proteases of Aspergillus niger. Curr Genet. 1994;26:238–44.PubMedGoogle Scholar
  50. 50.
    Katz ME, Evans CJ, Heagney EE, vanKuyk PA, Kelly JM, Cheetham BF. Mutations in genes encoding sorting nexins alter production of intracellular and extracellular proteases in Aspergillus nidulans. Genetics. 2009;181:1239–47.PubMedGoogle Scholar
  51. 51.
    St Leger RJ, Nelson JO, Screen SE. The entomopathogenic fungus Metarhizium anisopliae alters ambient pH, allowing extracellular protease production and activity. Microbiology. 1999;145:2691–9.PubMedGoogle Scholar
  52. 52.
    Kurucová A, Farkasová E, Varecka L, Simkovic M. Spontaneous and protein-induced secretion of proteinases from Saccharomyces cerevisiae. J Basic Microbiol. 2009;49:545–52.PubMedGoogle Scholar
  53. 53.
    Tomee JF, Kauffman HF, Klimp AH, de Monchy JG, Köeter GH, Dubois AE. Immunologic significance of a collagen-derived culture filtrate containing proteolytic activity in Aspergillus-related diseases. Allergy Clin Immunol. 1994;93:768–78.Google Scholar
  54. 54.
    Yike I, Rand T, Dearborn DG. The role of fungal proteinases in pathophysiology of Stachybotrys chartarum. Mycopathologia. 2007;164:171–81.PubMedGoogle Scholar
  55. 55.
    Braaksma M, Smilde AK, van der Werf MJ, Punt PJ. The effect of environmental conditions on extracellular protease activity in controlled fermentations of Aspergillus niger. Microbiology. 2009;155:3430–9.PubMedGoogle Scholar
  56. 56.
    Monod M. Secreted proteases from dermatophytes. Mycopathologia. 2008;166:285–94.PubMedGoogle Scholar
  57. 57.
    Urban S. Making the cut: central roles of intra membrane proteolysis in pathogenic microorganisms. Nat Rev Microbiol. 2009;7:411–23.PubMedGoogle Scholar
  58. 58.
    Nierman WC, Pain A, Anderson MJ, Wortman JR, Kim HS, Arroyo J, Berriman M, Abe K, Archer DB, Bermejo C, Bennett J, et al. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature. 2005;438:1151–6.PubMedGoogle Scholar
  59. 59.
    Jalving R, Godefrooij J, Veen WJ, van Ooyen AJJ, Schaap PJ. Characterization of the Aspergillus niger dapB gene, which encodes a novel fungal type IV dipeptidyl aminopeptidase. Mol Genet Genomics. 2005;273:319–25.PubMedGoogle Scholar
  60. 60.
    Beauvais A, Monod M, Wyniger J, Debeaupuis JP, Grouzmann E, Brakch N, Svab J, Hovanessian AG, Latgé JP. Dipeptidyl-peptidase IV secreted by Aspergillus fumigatus, a fungus pathogenic to humans. Infect Immun. 1997;65:3042–7.PubMedGoogle Scholar
  61. 61.
    Cunningham DF, O’Connor B. Proline specific peptidases. Biochim Biophys Acta. 1997;1343:160–86.PubMedGoogle Scholar
  62. 62.
    Golde TE, Wolfe MS, Greenbaum DC. Signal peptide peptidases: a family of intra membrane-cleaving proteases that cleave type 2 transmembrane proteins. Semin Cell Dev Biol. 2009;20:225–30.PubMedGoogle Scholar
  63. 63.
    Lavens SE, Rovira-Graells N, Birch M, Tuckwell D. ADAMs are present in fungi: Identification of two novel ADAM genes in Aspergillus fumigatus. FEMS Microbiol Lett. 2005;248:23–30.PubMedGoogle Scholar
  64. 64.
    Nakamura TH, Abe H, Hirata A, Shimoda C. ADAM family protein Mde10 is essential for development of spore envelopes in the fission yeast Schizosaccharomyces pombe. Eukaryot Cell. 2004;3:27–39.PubMedGoogle Scholar
  65. 65.
    Kennedy CC, Kottom TJ, Limper AH. Characterization of a novel ADAM protease expressed by Pneumocystis carinii. Infect Immun. 2009;77:3328–36.PubMedGoogle Scholar
  66. 66.
    Gagnon-Arsenault I, Parisé L, Tremblay J, Bourbonnais Y. Activation mechanism, functional role and shedding of glycosyl phosphatidylinositol-anchored Yps1p at the Saccharomyces cerevisiae cell surface. Mol Microbiol. 2008;69:982–93.PubMedGoogle Scholar
  67. 67.
    Klis FM, Sosinska GJ, de Groot PW, Brul S. Covalently linked cell wall proteins of Candida albicans and their role in fitness and virulence. FEMS Yeast Res. 2009;9:1013–28.PubMedGoogle Scholar
  68. 68.
    Kunihiro S, Kananishi Y, Sano M, Naito K, Matsuura Y, Taleno Y, Gojohori T, Yamagata Y, Abe K, Machida M. A polymerase chain reaction-based method for cloning novel members of a gene family using a combination of degenerate and inhibitory primers. Gene. 2002;289:177–84.PubMedGoogle Scholar
  69. 69.
    Cho EY, Cheon SA, Kim H, Choo J, Lee DJ, Ryu HM, Rhee SK, Chung BH, Kim JY, Kang HA. Multiple-yapsin-deficient mutant strains for high-level production of intact recombinant proteins in Saccharomyces cerevisiae. J Biotechnol. 2010;149:1–7.PubMedGoogle Scholar
  70. 70.
    Van den Hazel HB, Kielland-Brandt MC, Winther JR. Biosynthesis and function of yeast vacuolar proteases. Yeast. 1996;12:1–16.Google Scholar
  71. 71.
    Moehle CM, Tizard R, Lemmon SK, Smart J, Jones EW. Protease B of the lysosome-like vacuole of the yeast Saccharomyces cerevisiae is homologous to the subtilisin family of serine proteases. Mol Cell Biol. 1987;7:4390–9.PubMedGoogle Scholar
  72. 72.
    Shen HD, Lin WL, Tam MF, Chou H, Wang CW, Tsai JJ, Wang SR, Han SH. Identification of vacuolar serine protease, major allergen of Aspergillus fumigatus by immunoblotting and N-terminal amino acid sequence analysis. Clin Exp Allergy. 2001;31:295–302.PubMedGoogle Scholar
  73. 73.
    Pöll V, Denk U, Shen HD, Panzani RC, Dissertori O, Lackner P, Hemmer W, Mari A, Crameri R, Lottspeich F, Rid R, Richter K, Breitenbach M, Simon-Nobbe B. The vacuolar serine protease, a cross-reactive allergen from Cladosporium herbarum. Mol Immunol. 2009;46:1360–73.PubMedGoogle Scholar
  74. 74.
    Nozawa SR, May GS, Martinez-Rossi NM, Ferreira-Nozawa MS, Coutinho-Netto J, Maccheroni W Jr, Rossi A. Mutation in a calpain-like protease affects the posttranslational mannosylation of phosphatases in Aspergillus nidulans. Fungal Genet Biol. 2003;38:220–7.PubMedGoogle Scholar
  75. 75.
    Peñas MM, Hervás-Aguilar A, Munera-Huertas T, Reoyo E, Peñalva MA, Arst HN, Tilburn J. Further characterization of the signaling proteolysis step in the Aspergillus nidulans pH signal transduction pathway. Eukaryot Cell. 2007;6:960–70.PubMedGoogle Scholar
  76. 76.
    Rodríguez-Galán O, Galindo A, Hervás-Aguilar A, Arst HN Jr, Peñalva MA. Physiological involvement in pH signaling of Vps24-mediated recruitment of Aspergillus PalB cysteine protease to ESCRT-III. J Biol Chem. 2009;284:4404–12.PubMedGoogle Scholar
  77. 77.
    Bignell E, Negrete-Urtasun S, Calcagno AM, Haynes K, Arst HN, Rogers T. The Aspergillus pH-responsive transcription factor PacC regulates virulence. Mol Microbiol. 2005;55:1072–84.PubMedGoogle Scholar
  78. 78.
    Green BJ, Tovey ER, Sercombe JK, Blachere FM, Beezhold DH, Schmechel D. Airborne fungal fragments and allergenicity. Med Mycol. 2006;44(Suppl 1):S245–55.PubMedGoogle Scholar
  79. 79.
    Kaminishi H, Miyaguchi H, Tamaki T, Suenaga N, Hisamatsu M, Mihashi I, Matsumoto H, Maeda H, Hagihara Y. Degradation of humoral host defense by Candida albicans proteinase. Infect Immun. 1995;63:984–8.PubMedGoogle Scholar
  80. 80.
    Rambach G, Dum D, Mohsenipour I, Hagleitner M, Würzner R, Lass-Flörl C, Speth C. Secretion of a fungal protease represents a complement evasion mechanism in cerebral aspergillosis. Mol Immunol. 2010;47:1438–49.PubMedGoogle Scholar
  81. 81.
    Kauffman HF, van der Heide S. Exposure, sensitization, and mechanisms of fungus-induced asthma. Curr Allergy Asthma Rep. 2003;3:430–7.PubMedGoogle Scholar
  82. 82.
    Hosseini-Moghaddam SM, Husain S. Fungi and molds following lung transplantation. Semin Respir Crit Care Med. 2010;31:222–33.PubMedGoogle Scholar
  83. 83.
    Meyer-Hoffert U. Reddish, scaly, and itchy: how proteases and their inhibitors contribute to inflammatory skin diseases. Arch Immunol Ther Exp. 2009;57:345–54.Google Scholar
  84. 84.
    Giddey K, Monod M, Barblan J, Potts A, Waridel P, Zaugg C, Quadroni M. Comprehensive analysis of proteins secreted by Trichophyton rubrum and Trichophyton violaceum under in vitro conditions. J Proteome Res. 2007;6:3081–92.PubMedGoogle Scholar
  85. 85.
    Mignon B, Swinnen M, Bouchara JP, Hofinger M, Nikkels A, Pierard G, Gerday C, Losson B. Purification and characterization of a 315 kDa keratinolytic subtilisin-like serine protease from Microsporum canis and evidence of its secretion in naturally infected cats. Med Mycol. 1998;36:395–404.PubMedGoogle Scholar
  86. 86.
    Brouta F, Descamps F, Fett T, Losson B, Gerday C, Mignon B. Purification and characterization of a 43.5 kDa keratinolytic metalloprotease from Microsporum canis. Med Mycol. 2001;39:269–75.PubMedGoogle Scholar
  87. 87.
    Zaugg C, Jousson O, Léchenne B, Staib P, Monod M. Trichophyton rubrum secreted and membrane-associated carboxypeptidases. Int J Med Microbiol. 2008;298:669–82.PubMedGoogle Scholar
  88. 88.
    Zaugg C, Monod M, Weber J, Harshman K, Pradervand S, Thomas J, Bueno M, Giddey K, Staib P. Gene expression profiling in the human pathogenic dermatophyte Trichophyton rubrum during growth on proteins. Eukaryot Cell. 2009;8:241–50.PubMedGoogle Scholar
  89. 89.
    Staib P, Zaugg C, Mignon B, Weber J, Grumbt M, Pradervand S, Harshman K, Monod M. Differential gene expression in the pathogenic dermatophyte Arthroderma benhamiae in vitro versus during infection. Microbiology. 2010;156:884–95.PubMedGoogle Scholar
  90. 90.
    Vermout S, Tabart J, Baldo A, Mathy A, Losson B, Mignon B. Pathogenesis of dermatophytosis. Mycopathologia. 2008;166:267–75.PubMedGoogle Scholar
  91. 91.
    Monod M, Togni G, Rahalison L, Frenk E. Isolation and characterization of an extracellular alkaline protease of Aspergillus fumigatus. J Med Microbiol. 1991;35:23–8.PubMedGoogle Scholar
  92. 92.
    Alp S, Arikan S. Investigation of extracellular elastase, acid proteinase and phospholipase activities as putative virulence factors in clinical isolates of Aspergillus species. J Basic Microbiol. 2008;48:331–7.PubMedGoogle Scholar
  93. 93.
    Latgé J-P. The pathobiology of Aspergillus fumigatus. Trends Microbiol. 2001;9:382–9.PubMedGoogle Scholar
  94. 94.
    Kothary MH, Chase T, Macmillan JD. Correlation of elastase production by some strains of Aspergillus fumigatus with ability to cause pulmonary invasive aspergillosis in mice. Infect Immun. 1984;43:320–5.PubMedGoogle Scholar
  95. 95.
    Ramesh MV, Kolattukudy PE. Disruption of the serine proteinase gene (sep) in Aspergillus flavus leads to a compensatory increase in the expression of a metalloproteinase gene (mep20). J Bacteriol. 1996;178:3899–907.PubMedGoogle Scholar
  96. 96.
    Sharon H, Hagag S, Osherov N. Transcription factor PrtT controls expression of multiple secreted proteases in the human pathogenic mold Aspergillus fumigatus. Infect Immun. 2009;77:4051–60.PubMedGoogle Scholar
  97. 97.
    Bergmann A, Hartmann T, Cairns T, Bignell EM, Krappmann S. A regulator of Aspergillus fumigatus extracellular proteolytic activity is dispensable for virulence. Infect Immun. 2009;77:4041–50.PubMedGoogle Scholar
  98. 98.
    Jenning DW, Ward PN, Fenelon LE, Benbow EW. Lack of vessel wall elastolysis in human invasive aspergillosis. Infect Immun. 1992;60:5153–6.Google Scholar
  99. 99.
    Frosco MT, Chase T, Macmillan JD. The effect of elastase-specific monoclonal and polyclonal antibodies on the virulence of Aspergillus fumigatus in immunocompromised mice. Mycopathologia. 1994;125:65–76.PubMedGoogle Scholar
  100. 100.
    Neely AN, Holder IA. Effect of proteolytic activity on virulence of Candida albicans in burned mice. Infect Immun. 1990;58:1527–31.PubMedGoogle Scholar
  101. 101.
    Meiller TF, Hube B, Schild L, Shirtliff ME, Scheper MA, Winkler R, Ton A, Jabra-Rizk MA. A novel immune evasion strategy of Candida albicans: proteolytic cleavage of a salivary antimicrobial peptide. PLoS One. 2009;4:e5039.PubMedGoogle Scholar
  102. 102.
    Loaiza-Loeza S, Parra-Ortega B, Cancino-Díaz JC, Illades-Aguiar B, Hernández-Rodríguez CH, Villa-Tanaca L. Differential expression of Candida dubliniensis-secreted aspartyl proteinase genes (CdSAP1–4) under different physiological conditions and during infection of a keratinocyte culture. FEMS Immunol Med Microbiol. 2009;56:212–22.PubMedGoogle Scholar
  103. 103.
    Negri M, Martins M, Henriques M, Svidzinski TI, Azeredo J, Oliveira R. Examination of potential virulence factors of Candida tropicalis clinical isolates from hospitalized patients. Mycopathologia. 2010;169:175–82.PubMedGoogle Scholar
  104. 104.
    Lermann U, Morschhäuser J. Secreted aspartic proteases are not required for invasion of reconstituted human epithelia by Candida albicans. Microbiology. 2008;154:3281–95.PubMedGoogle Scholar
  105. 105.
    Rementeria A, Lopez-Molina N, Ludwig A, Vivanco AB, Bikandi J, Ponton J, Garaizar J. Genes and molecules involved in Aspergillus fumigatus virulence. Rev Iberoam Micol. 2005;22:1–23.PubMedGoogle Scholar
  106. 106.
    Pain A, Woodward J, Ouail MA, Anderson MJ, Clark R, Collins M, Fosker N, Fraser A, Harris D, Larke N, Murphy L, Humphray S, O’Neil S, Pertea M, Price C, Rabbinowitsch E, Rajandream MA, Saizberg S, Saunders D, Seeger K, Sharp S, Warren T, Denning DW, Barreil B, Hall N. Insight into the genome of Aspergillus fumigatus: analysis of a 922 kb region encompassing the nitrate assimilation gene cluster. Fungal Genet Biol. 2004;41:443–53.PubMedGoogle Scholar
  107. 107.
    Reed CE. Inflammatory effect of environmental proteases on airway mucosa. Curr Allergy Asthma Rep. 2007;7:368–74.PubMedGoogle Scholar
  108. 108.
    Kauffman HF, Tomee JF, van der Werf TS, de Monchy JG, Koëter GK. Review of fungus-induced asthmatic reactions. Am J Respir Crit Care Med. 1995;151:2109–15.PubMedGoogle Scholar
  109. 109.
    Tomee JF, van Weissenbruch R, de Monchy JG, Kauffman HF. Interactions between inhalant allergen extracts and airway epithelial cells: effect on cytokine production and cell detachment. J Allergy Clin Immunol. 1998;102:75–85.PubMedGoogle Scholar
  110. 110.
    Kauffman HK, Tomee JFC, Marjolein A, van de Riet A, Timmerman JB, Borger P. Protease-dependent activation of epithelial cells by fungal allergens leads to morphologic changes and cytokine production. J Allergy Clin Immunol. 2000;105:1185–93.PubMedGoogle Scholar
  111. 111.
    Shen HD, Tam MF, Tang R-B, Chou H. Aspergillus and Penicillium allergens. Focus on proteases. Curr Allerg Asthma Rep. 2007;7:351–6.Google Scholar
  112. 112.
    Chou H, Tam MF, Lee SS, Tai HY, Chang CY, Chou CT, Shen HD. A vacuolar serine protease (Rho m 2) is a major allergen of Rhodotorula mucilaginosa and belongs to a class of highly conserved pan-fungal allergens. Int Arch Allergy Immunol. 2005;138:134–41.PubMedGoogle Scholar
  113. 113.
    Chou H, Tam MF, Lee LH, Chiang CH, Tai HY, Panzani RC, Shen HD. Vacuolar serine protease is a major allergen of Cladosporium cladosporioides. Int Arch Allergy Immunol. 2008;146:277–86.PubMedGoogle Scholar
  114. 114.
    Su NY, Yu CJ, Shen HD, Pan FM, Chow LP. Pen c 1, a novel enzymic allergen protein from Penicillium citrinum. Purification, characterization, cloning and expression. Eur J Biochem. 1999;261:115–23.PubMedGoogle Scholar
  115. 115.
    Kurup VP, Shen HD, Banerjee B. Respiratory fungal allergy. Microbes Infect. 2000;2:1101–10.PubMedGoogle Scholar
  116. 116.
    Chou H, Lai HY, Tam MF, Chou MY, Wang SR, Han SH, Shen HD. cDNA cloning, biological and immunological characterization of the alkaline serine protease major allergen from Penicillium chrysogenum. Int Arch Allergy Immunol. 2002;127:15–26.PubMedGoogle Scholar
  117. 117.
    Lee LH, Tam MF, Chou H, Tai HY, Shen HD. Lys, pro and trp are critical core amino acid residues recognized by FUM20, a monoclonal antibody against serine protease pan-fungal allergens. Int Arch Allergy Immunol. 2007;143:194–200.PubMedGoogle Scholar
  118. 118.
    Lai HY, Tam MF, Chou H, Lee SS, Tai HY, Shen HD. Molecular and structural analysis of immunoglobulin E-binding epitopes of Pen ch 13, an alkaline serine protease major allergen from Penicillium chrysogenum. Clin Exp Allergy. 2004;34:1926–33.PubMedGoogle Scholar
  119. 119.
    Matsuwaki Y, Wada K, White TA, Benson LM, Charlesworth MC, Checkel JL, Inoue Y, Hotta K, Ponikau JU, Lawrence CB, Kita H. Recognition of fungal protease activities induces cellular activation and eosinophil-derived neurotoxin release in human eosinophils. J Immunol. 2009;183:6708–16.PubMedGoogle Scholar
  120. 120.
    Kheradmand F, Kiss A, Xu J, Lee S-H, Kolattukudy PE, Corry DB. A protease-activated pathway underlying Th cell type 2 activation and allergic lung disease. J Immunol. 2002;169:5904–11.PubMedGoogle Scholar
  121. 121.
    Tripathi P, Kukreja N, Singh BP, Arora N. Serine protease activity of Cur l 1 from Curvularia lunata augments Th2 response in mice. J Clin Immunol. 2009;29:292–302.PubMedGoogle Scholar
  122. 122.
    Kukreja N, Sridhara S, Singh BP, Arora N. Effect of proteolytic activity of Epicoccum purpurescens major allergen, Epi p 1 in allergic inflammation. Clin Exp Immunol. 2008;154:162–71.PubMedGoogle Scholar
  123. 123.
    Lambrecht BN, Hammad H. Biology of lung dendritic cells at the origin of asthma. Immunity. 2009;31:412–24.PubMedGoogle Scholar
  124. 124.
    Steinhoff M, Buddenkotte J, Shpacovitch V, Rattenholl A, Moormann C, Vergnolle N, Luger TA, Hollenberg MD. Proteinase-activated receptors: transducers of proteinase-mediated signaling in inflammation and immune response. Endocr Rev. 2005;26:1–43.PubMedGoogle Scholar
  125. 125.
    Ramachandran R, Hollenberg MD. Proteinases and signaling: pathophysiological and therapeutic implications via PARs and more. Br J Pharmacol. 2008;153:S263–82.PubMedGoogle Scholar
  126. 126.
    Moffatt JD, Page CP, Laurent GJ. Shooting for PARs in lung diseases. Curr Opin Pharmacol. 2004;4:221–9.PubMedGoogle Scholar
  127. 127.
    Sokolova E, Reiser G. A novel therapeutic target in various lung diseases: airway proteases and protease-activated receptors. Pharmacol Ther. 2007;115:70–83.PubMedGoogle Scholar
  128. 128.
    Knight DA, Lim S, Scaffidi AK, Roche N, Chung KF, Stewart GA, Thompson PJ. Protease activated receptors in human airways: upregulation of PAR-2 in respiratory epithelial cells from patients with asthma. J Allergy Clin Immunol. 2001;108:797–803.PubMedGoogle Scholar
  129. 129.
    Reed CE, Kita H. The role of protease activation of inflammation in allergic respiratory diseases. J Allergy Clin Immunol. 2004;114:997–1008.PubMedGoogle Scholar
  130. 130.
    Georas SN, Rezaee F, Lerner L, Beck L. Dangerous allergens: why some allergens are bad actors. Curr Allergy Asthma Rep. 2010;10:92–8.PubMedGoogle Scholar
  131. 131.
    Schmidlin F, Amadesi S, Dabbagh K, Lewis DE, Knott P, Bunnett NW, Gater PR, Geppetti P, Bertrand C, Stevens ME. Protease-activated receptor-2 mediates eosinophil infiltration and hyperreactivity in allergic inflammation of the airway. J Immunol. 2002;169:5315–21.PubMedGoogle Scholar
  132. 132.
    Sun G, Stacey MA, Schmidt M, Mori L, Mattoli S. Interaction of mite allergens Der p3 and Der p9 with protease-activated receptor-2 expressed by lung epithelial cells. J Immunol. 2001;167:1014–21.PubMedGoogle Scholar
  133. 133.
    Page K, Strunk VS, Hershenson MB. Cockroach proteases increase IL-8 expression in human bronchial epithelial cells via activation of protease-activated receptor-2 and extracellular-signal-regulated kinase. J Allergy Clin Immunol. 2003;112:1112–8.PubMedGoogle Scholar
  134. 134.
    Chiu L, Perng DW, Yu CH, Su SN, Chow LP. Mold allergen, Pen c13, induced IL-8 expression in human airway epithelial cells by activating protease-activated receptor 1 and 2. J Immunol. 2007;178:5237–44.PubMedGoogle Scholar
  135. 135.
    Shin SH, Lee YH, Jeon CH. Protease-dependent activation of nasal polyp epithelial cells by airborne fungi leads to migration of eosinophils and neutrophils. Acta Otolaryngol. 2006;126:1286–94.PubMedGoogle Scholar
  136. 136.
    Moffatt JD, Jeffrey K, Cocks TM. Protease-activated receptor-2 activating peptide SLIGRL inhibits bacterial lipopolysaccharide-induced recruitment of polymorphonuclear leukocytes into the airways of mice. Am J Respir Cell Mol Biol. 2002;26:680–4.PubMedGoogle Scholar
  137. 137.
    Cheng SC, Chai LY, Joosten LA, Vecchiarelli A, Hube B, Van Der Meer JW, Kullberg BJ, Netea MG. Candida albicans releases soluble factors that potentiate cytokine production by human cells through a protease-activated receptor 1- and 2-independent pathway. Infect Immun. 2010;78:393–9.PubMedGoogle Scholar
  138. 138.
    Wills-Karp M, Nathan A, Page K, Karp CL. New insights into innate immune mechanisms underlying allergenicity. Mucosal Immunol. 2010;3:104–10.PubMedGoogle Scholar
  139. 139.
    Barrett NA, Austen KF. Innate cells and T helper 2 cell immunity in airway inflammation. Immunity. 2009;31:425–37.PubMedGoogle Scholar
  140. 140.
    Kouzaki H, O’Grady SM, Lawrence CB, Kita H. Proteases induce production of thymic stromal lymphopoietin by airway epithelial cells through protease-activated receptor-2. J Immunol. 2009;183:1427–34.PubMedGoogle Scholar
  141. 141.
    Bozza S, Gaziano R, Spreca A, Bacci A, Montagnoli C, di Francesco P, Romani L. Dendritic cells transport conidia and hyphae of Aspergillus fumigatus from the airways to the draining lymph nodes and initiate disparate Th responses to the fungus. J Immunol. 2002;168:1362–71.PubMedGoogle Scholar
  142. 142.
    Denning DW, O’Driscoll BR, Hogaboam CM, Bowyer P, Niven RM. The link between fungi and severe asthma: a summary of the evidence. Eur Respir J. 2006;27:615–26.PubMedGoogle Scholar
  143. 143.
    Lamhamedi-Cherradi S-E, Martin RE, Ito T, Kheradmand F, Corry DB, Liu Y-J, Moyle M. Fungal proteases induce Th2 polarization through limited dendritic cell maturation and reduced production of IL-12. J Immunol. 2008;180:6000–9.PubMedGoogle Scholar
  144. 144.
    Sokol CL, Medzhitov R. Role of basophils in the initiation of Th2 responses. Curr Opin Immunol. 2010;22:73–7.PubMedGoogle Scholar
  145. 145.
    Sokol CL, Barton GM, Farr AG, Medzhitov R. A mechanism for the initiation of allergen-induced T helper type 2 responses. Nat Immunol. 2008;9:310–8.PubMedGoogle Scholar
  146. 146.
    Ghaemmaghami AM, Gough L, Sewell HF, Shakib F. The proteolytic activity of the major dust mite allergen Der p 1 conditions dendritic cells to produce less interleukin-12: allergen-induced Th2 bias determined at the dendritic cell level. Clin Exp Allergy. 2002;32:1468–75.PubMedGoogle Scholar
  147. 147.
    Schulz O, Sewell HF, Shakib F. Proteolytic cleavage of CD25, the alpha subunit of the human T cell interleukin 2 receptor, by Der p 1, a major mite allergen with cysteine protease activity. J Exp Med. 1998;187:271–5.PubMedGoogle Scholar
  148. 148.
    Schulz O, Laing P, Sewell HF, Shakib F. Der p 1, a major allergen of the house dust mite, proteolytically cleaves the low-affinity receptor for human IgE (CD23). Eur J Immunol. 1995;25:3191–4.PubMedGoogle Scholar
  149. 149.
    Shakib F, Ghaemmaghami AM, Sewell HF. The molecular basis of allergenicity. Trends Immunol. 2008;29:633–42.PubMedGoogle Scholar
  150. 150.
    Brandt EB, Mingler MK, Stevenson MD, Wang N, Khurana Hershey GK, Whitsett JA, Rothenberg ME. Surfactant protein D alters allergic lung responses in mice and human subjects. J Allergy Clin Immunol. 2008;121:1140–7.PubMedGoogle Scholar
  151. 151.
    Madan T, Kishore U, Singh M, Strong P, Clark H, Hussain EM, Reid KB, Sarma PU. Surfactant proteins A and D protect mice against pulmonary hypersensitivity induced by Aspergillus fumigatus antigens and allergens. J Clin Invest. 2001;107:467–75.PubMedGoogle Scholar
  152. 152.
    Wan H, Winton HL, Soeller C, Taylor GW, Gruenert DC, Thompson PJ, Cannell MB, Stewart GA, Garrod DR, Robinson C. The transmembrane protein occludin of epithelial tight junctions is a functional target for serine peptidases from faecal pellets of Dermatophagoides pteronyssinus. Clin Exp Allergy. 2001;31:279–94.PubMedGoogle Scholar
  153. 153.
    Tai HY, Tam MF, Chou H, Peng HJ, Su SN, Perng DW, Shen HD. Pen ch 13 allergen induces secretion of mediators and degradation of occludin protein of human lung epithelial cells. Allergy. 2006;61:382–8.PubMedGoogle Scholar
  154. 154.
    Kogan TV, Jadoun J, Mittelman L, Hirschberg K, Osherov N. Involvement of secreted Aspergillus fumigatus proteases in disruption of the actin fiber cytoskeleton and loss of focal adhesion sites in infected A549 lung pneumocytes. J Infect Dis. 2004;189:1965–73.PubMedGoogle Scholar
  155. 155.
    Kumagai K, Ohno I, Okada S, Ohkawara Y, Suzuki K, Shinya T, Nagase H, Iwata K, Shirato K. Inhibition of matrix metalloproteinases prevents allergen-induced airway inflammation in a murine model of asthma. J Immunol. 1999;162:4212–9.PubMedGoogle Scholar
  156. 156.
    Simonen-Jokinen T, Maisi P, Tervahartiala T, McGorum B, Pirie S, Sorsa T. Direct activation of gelatinase B (MMP-9) by hay dust suspension and different components of organic dust. Vet Immunol Immunopathol. 2006;109:289–95.PubMedGoogle Scholar
  157. 157.
    Pietrella D, Rachini A, Pandey N, Schild L, Netea M, Bistoni F, Hube B, Vecchiarelli A. Inflammatory response induced by aspartic proteases of C. albicans is independent from proteolytic activity. Infect Immun. 2010; [Epub ahead of print Aug 16 2010].Google Scholar
  158. 158.
    Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140:805–20.PubMedGoogle Scholar
  159. 159.
    Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune response. Nat Immunol. 2004;5:987–95.PubMedGoogle Scholar
  160. 160.
    Romani L. Immunity to fungal infections. Nat Rev Immunol. 2004;4:1–23.PubMedGoogle Scholar
  161. 161.
    Bellocchio S, Montagnoli C, Bozza S, Gaziano R, Rossi G, Mambula SS, Vecchi A, Mantovani A, Levitz SM, Romani L. The contribution of the Toll-like/IL-1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo. J Immunol. 2004;172:3059–69.PubMedGoogle Scholar
  162. 162.
    Ostrowska E, Sokolova E, Reiser G. PAR-2 activation and LPS synergistically enhance inflammatory signaling in airway epithelial cells by raising PAR expression level and interleukin 8- release. Am J Physiol Lung Cell Mol Physiol. 2007;293:L1208–18.PubMedGoogle Scholar
  163. 163.
    Rallabhandi P, Nhu QM, Toshchakov VY, Piao W, Medvedev AE, Hollenberg MD, Fasano A, Vogel SN. Analysis of proteinase-activated receptor 2 and TLR4 signal transduction;a novel paradigm for receptor cooperativity. J Biol Chem. 2008;283:24314–25.PubMedGoogle Scholar
  164. 164.
    Nhu QM, Shirey K, Teijaro JR, Farber DL, Netzel-Arnett S, Antalis TM, Fasano A, Vogel SN. Novel signaling interactions between proteinase-activated receptor-2 and Toll-like receptors in vivo and in vitro. Mucosal Immunol. 2010;3:29–39.PubMedGoogle Scholar
  165. 165.
    Moretti S, Bellocchio S, Bonifazi P, Bozza S, Zelante T, Bistoni F, Romani L. The contribution of PARs to inflammation and immunity to fungi. Mucosal Immunol. 2008;1:156–68.PubMedGoogle Scholar
  166. 166.
    Chapman MD, Wünschmann S, Pomés A. Proteases as Th2 adjuvants. Curr Allergy Asthma Rep. 2007;7:363–7.PubMedGoogle Scholar
  167. 167.
    Porter P, Susarla SC, Polikepahad S, Qian Y, Hampton J, Kiss A, Vaidya S, Sur S, Ongeri V, Yang T, Delclos GL, Abramson S, Kheradmand F, Corry DB. Link between allergic asthma and airway mucosal infection suggested by proteinase-secreting household fungi. Mucosal Immunol. 2009;2:504–17.PubMedGoogle Scholar
  168. 168.
    Goplen N, Karim MZ, Liang Q, Gorska MM, Rozario S, Guo L, Alam R. Combined sensitization of mice to extracts of dust mite, ragweed, and Aspergillus species breaks through tolerance and establishes chronic features of asthma. J Allergy Clin Immunol. 2009;123:925–32.PubMedGoogle Scholar
  169. 169.
    Rosenbaum MR, Esch RE, Schwartzman RM. Effects of mold proteases on the biological activity of allergenic pollen extracts. Am J Vet Res. 1996;57:1447–52.PubMedGoogle Scholar
  170. 170.
    Gao FS, Qiao JO, Zhang Y, Jin XQ. Chronic intranasal administration of Aspergillus fumigatus spores leads to aggravation of airway inflammation and remodelling in asthmatic rats. Respirology. 2009;14:360–70.PubMedGoogle Scholar
  171. 171.
    Kurup VP, Grunig G. Animal models of allergic bronchopulmonary aspergillosis. Mycopathologia. 2002;153:165–77.PubMedGoogle Scholar
  172. 172.
    Heijink IH, Postma DS, Noordhoek JA, Broekema M, Kapus A. House dust mite-promoted epithelial to mesenchymal transition in human bronchial epithelium. Am Respir Cell Mol Biol. 2010;42:69–79.Google Scholar
  173. 173.
    Moreau ME, Garbacki N, Molinaro G, Brown NJ, Marceau F, Adam A. The kallikrein-kinin system: current and future pharmacological targets. J Pharmacol Sci. 2005;99:6–38.PubMedGoogle Scholar
  174. 174.
    Tapper H, Herwald H. Modulation of hemostatic mechanisms in bacterial infectious diseases. Blood. 2000;96:2329–37.PubMedGoogle Scholar
  175. 175.
    Stuardo M, Gonzalez CB, Nualart F, Boric M, Corthorn J, Bhoola KD, Figueroa CD. Stimulated human neutrophils form biologically active kinin peptides from high and low molecular weight kininogens. J Leukoc Biol. 2004;75:631–40.PubMedGoogle Scholar
  176. 176.
    Barbasz A, Kozik A. The assembly and activation of kinin-forming systems on the surface of human U-937 macrophage-like cells. Biol Chem. 2009;390:269–75.PubMedGoogle Scholar
  177. 177.
    Joseph K, Ghebrehiwet B, Kaplan AP. Activation of the kinin-forming cascade on the surface of endothelial cells. Biol Chem. 2001;382:71–5.PubMedGoogle Scholar
  178. 178.
    Barnes PJ. Bradykinin and asthma. Thorax. 1992;47:979–83.PubMedGoogle Scholar
  179. 179.
    Imamura T, Potempa J, Travis J. Activation of the kallikrein-kinin system and release of new kinins through alternative cleavage of kininogens by microbial and human cell proteinases. Biol Chem. 2004;385:989–96.PubMedGoogle Scholar
  180. 180.
    Imamura T, Tanase S, Szmyd G, Kozik A, Travis J, Potempa J. Induction of vascular leakage through release of bradykinin and a novel kinin by cysteine proteinases from Staphylococcus aureus. J Exp Med. 2005;201:1669–76.PubMedGoogle Scholar
  181. 181.
    Rapala-Kozik M, Karkowska-Kuleta J, Ryzanowska A, Golda A, Barbasz A, Faussner A, Kozik A. Degradation of human kininogens with the release of kinin peptides by extracellular proteinases of Candida spp. Biol Chem. 2010;391:823–30.PubMedGoogle Scholar
  182. 182.
    Maruo K, Akaike T, Inada Y, Ohkubo I, Ono T, Maeda H. Effect of microbial and mite proteases on low and high molecular weight kininogens. Generation of kinin and inactivation of thiol protease inhibitory activity. J Biol Chem. 1993;268:17711–5.PubMedGoogle Scholar
  183. 183.
    Molla A, Yamamoto T, Akaike T, Miyoshi S, Maeda H. Activation of Hageman factor and prekallikrein and generation of kinin by various microbial proteinases. J Biol Chem. 1989;264:10589–94.PubMedGoogle Scholar
  184. 184.
    Kaminishi H, Tanaka M, Cho T, Maeda H, Hagihara Y. Activation of the plasma kallikrein-kinin system by Candida albicans proteinase. Infect Immun. 1990;58:2139–43.PubMedGoogle Scholar
  185. 185.
    Fischer G, Eckloff U. Kininases from yeasts. Zentralbl Bakteriol Orig A. 1975;231:278–92.PubMedGoogle Scholar
  186. 186.
    Kordula T, Banbula A, Macomson J, Travis J. Isolation properties of stachyrase A, a chymotrypsin-like serine proteinase from Stachybotrys chartarum. Infect Immun. 2002;70:419–21.PubMedGoogle Scholar
  187. 187.
    Freedman HJ, Wilkens HJ, Back N. Fungal proteases and the mammalian kinin system: I. Brinolase-catalyzed kinin formation and S2160 hydrolysis. Res Commun Chem Pathol Pharmacol. 1977;18:543–60.PubMedGoogle Scholar
  188. 188.
    Lund F, Ekeström S, Frisch EP, Magaard F. Thrombolytic treatment with i.v. brinase of advanced arterial obliterative disease of the limbs. Angiology. 1975;26:534–56.PubMedGoogle Scholar
  189. 189.
    Sugimoto S, Fujii T, Morimiya T, Johodo O, Nakamura T. The fibrinolytic activity of a novel protease derived from a tempeh producing fungus, Fusarium sp. BLB. Biosci Biotechnol Biochem. 2007;71:2184–9.PubMedGoogle Scholar
  190. 190.
    Frick IM, Björck L, Herwald H. The dual role of the contact system in bacterial infectious disease. Thromb Haemost. 2007;98:497–502.PubMedGoogle Scholar
  191. 191.
    Karkowska-Kuleta J, Kozik A, Rapala-Kozik M. Binding and activation of the human plasma kinin-forming system on the cell walls of Candida albicans and Candida tropicalis. Biol Chem. 2010;391:97–103.PubMedGoogle Scholar
  192. 192.
    Scharfstein J. Cooperative activation of TLR2 and bradykinin B2 receptor is required for induction of type 1 immunity in a mouse model of subcutaneous infection by Trypanosoma cruzi. J Immunol. 2006;177:6325–35.PubMedGoogle Scholar
  193. 193.
    Aliberti J, Viola JP, Vieira-de-Abreu A, Bozza PT, Sher A, Scharfstein J. Cutting edge: bradykinin induces IL-12 production by dendritic cells: a danger signal that drives TH1 polarization. J Immunol. 2003;170:5349–53.PubMedGoogle Scholar
  194. 194.
    Monteiro AC, Schmitz V, Svensjo E, Gazzinelli RT, Almeida IC, Todorov A, de Arruda LB, Torrecilhas AC, Pesquero JB, Morrot A, Bouskela E, Bonomo A, Lima AP, Müller-Esterl W, Scharfstein J. Cooperative activation of TLR2 and bradykinin B2 receptor is required for induction of type 1 immunity in a mouse model of subcutaneous infection by Trypanosoma cruzi. J Immunol. 2006;177:6325–35.PubMedGoogle Scholar
  195. 195.
    Feng PH, Hsiung TC, Kuo HP, Huang CD. Cross-talk between bradykinin and epidermal growth factor in regulating IL-6 production in human airway smooth muscle cells. Chang Gung Med J. 2010;33:92–9.PubMedGoogle Scholar
  196. 196.
    Kaminishi H, Hamatake T, Cho T, Tamaki T, Suenaga N, Fuji T, Hagihara Y, Maeda H. Activation of the blood clotting factors by microbial proteases. FEMS Microbiol Lett. 1994;121:327–32.PubMedGoogle Scholar
  197. 197.
    Bergmann S, Hammerschmidt S. Fibrinolysis and host response in bacterial infections. Thromb Haemost. 2007;98:512–20.PubMedGoogle Scholar
  198. 198.
    Chattopadhyay A, Gray LR, Patton LL, Caplan DJ, Slade GD, Tien HC, Shugars DC. Salivary secretory leukocyte protease inhibitor and oral candidiasis in human immunodeficiency virus type 1-infected persons. Infect Immun. 2004;72:1956–63.PubMedGoogle Scholar
  199. 199.
    Schnepel J, Tschesche H. The proteolytic activity of the recombinant cryptic human fibronectin type IV collagenase from E. coli expression. J Prot Chem. 2000;19:685–92.Google Scholar
  200. 200.
    Vliagoftis H, Forsythe P. Should we target allergen protease activity to decrease the burden of allergic airway inflammation? Inflamm Allergy Drug Targets. 2008;7:288–95.PubMedGoogle Scholar
  201. 201.
    Neustadt M, Costina V, Kupfahl C, Buchheidt D, Eckerskorn C, Neumaier M, Findeisen P. Characterization and identification of proteases secreted by Aspergillus fumigatus using free flow electrophoresis and MS. Electrophoresis. 2009;30:2142–50.PubMedGoogle Scholar
  202. 202.
    Schaal R, Kupfahl C, Buchheidt D, Neumaier M, Findeisen P. Systematic identification of substrates for profiling of secreted proteases from Aspergillus species. J Microbiol Methods. 2007;71:93–100.PubMedGoogle Scholar
  203. 203.
    Fonović M, Bogyo M. Activity based probes for proteases: application to biomarker discovery, molecular imaging and drug screening. Curr Pharm Des. 2007;13:253–61.PubMedGoogle Scholar
  204. 204.
    Rao MB, Tanksale AM, Ghatge MS, Deshpande V. Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev. 1998;62:597–635.PubMedGoogle Scholar
  205. 205.
    Gotou T, Shinoda T, Mizuno S, Yamamoto M. Purification and identification of proteolytic enzymes from Aspergillus oryzae capable of producing the antihypertensive peptide Ile-Pro-Pro. J Biosci Bioeng. 2009;107:615–9.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Environmental Health Sciences, School of MedicineCase Western Reserve UniversityClevelandUSA

Personalised recommendations