, Volume 169, Issue 5, pp 413–423 | Cite as

Ophiostoma tsotsi sp. nov., A Wound-infesting Fungus of Hardwood Trees in Africa

  • Joha W. Grobbelaar
  • Z. Wilhelm de BeerEmail author
  • Paulette Bloomer
  • Michael J. Wingfield
  • Brenda D. Wingfield


Polymorphic sequence-characterised marker assays from a recent diversity study on the Ascomycete fungus Ophiostoma quercus reported that some isolates from Africa were genetically distinct from O. quercus. In the present study, these African isolates were compared with authentic O. quercus isolates by evaluating morphological characters, growth in culture, mating compatibility and DNA sequence data. The isolates from Africa were morphologically similar to O. quercus, presenting Pesotum and Sporothrix synanamorphs in culture. Phylogenetic analyses of the ribosomal internal transcribed spacer regions 1 and 2, β-tubulin and translation elongation factor 1-α gene regions confirmed that the African group represents a distinct species within the hardwood lineage of the O. piceae complex, closely related to O. ulmi and O. himal-ulmi. Mating studies between O. quercus and the African isolates showed that isolates mated predominantly with those of their own group, although there were rare cases of fertile crosses between the groups. Isolates residing in the African lineage are described here as a new species, O. tsotsi sp. nov.


Ophiostoma quercus Blue-stain fungi Pesotum Ophiostomatales 



We thank Jolanda Roux, Ronald Heath and other colleagues who assisted with the collection of isolates. We acknowledge our African collaborators: Gerald Meke from the Forestry Research Institute of Malawi, Aza Mbaga from the Tanganyika Wattle Company, Tanzania, the Forestry Department and Makerere University, Uganda. We are also grateful to Dr. Seonju Marincowitz for assisting with light microscopy, Mr Alan Hall for assistance with scanning electron microscopy and Dr. Hugh Glen for providing the Latin diagnosis. Funding for this study was provided by the National Research Foundation (NRF), the Tree Protection Co-operative Programme (TPCP), the THRIP initiative of the Department of Trade and Industry (DTI) and the Department of Science and Technology (DST)/NRF Centre of Excellence in Tree Health Biotechnology, South Africa.

Supplementary material

11046_2009_9267_MOESM1_ESM.pdf (26 kb)
Supplementary material 1 (PDF 26 kb)


  1. 1.
    Piel F, Gilbert M, De Cannière C, Grégoire J-C. Coniferous round wood imports from Russia and Baltic countries to Belgium. A pathway analysis for assessing risks of exotic pest insect introductions. Divers Distrib. 2008;14:318–28.CrossRefGoogle Scholar
  2. 2.
    Zipfel RD, De Beer ZW, Jacobs K, Wingfield BD, Wingfield MJ. Multi-gene phylogenies define Ceratocystiopsis and Grosmannia distinct from Ophiostoma. Stud Mycol. 2006;55:75–97.CrossRefPubMedGoogle Scholar
  3. 3.
    Seifert KA, Wingfield MJ, Kendrick WB. Sapstain of commercial lumber by species of Ophiostoma and Ceratocystis. In: Wingfield MJ, Seifert KA, Webber J, editors. Ceratocystis and Ophiostoma: taxonomy, ecology and pathogenicity. St. Paul, Minnesota: APS Press; 1993. pp. 141–51.Google Scholar
  4. 4.
    Brasier CM. China and the origins of Dutch elm disease: an appraisal. Plant Pathol. 1990;39:5–16.CrossRefGoogle Scholar
  5. 5.
    Brasier CM. Ophiostoma novo-ulmi sp. nov., causative agent of current Dutch elm disease pandemics. Mycopathol. 1991;115:151–61.CrossRefGoogle Scholar
  6. 6.
    Lin TC, Huang JW, Hsieh WH. Identification of ophiostomatoid fungi associated with Chinese fir wilt in Taiwan [in Chinese]. Plant Pathol Bull. 2003;12:33–42.Google Scholar
  7. 7.
    Zhou XD, De Beer ZW, Ahumada R, Wingfield BD, Wingfield MJ. Ophiostoma and Ceratocystiopsis spp. associated with two pine-infesting bark beetles in Chile. Fungal Divers. 2004;15:261–74.Google Scholar
  8. 8.
    Zhou X, De Beer ZW, Wingfield MJ. DNA sequence comparisons of Ophiostoma spp., including Ophiostoma aurorae sp. nov., associated with pine bark beetles in South Africa. Stud Mycol. 2006;55:269–77.CrossRefPubMedGoogle Scholar
  9. 9.
    Carlier F-X, Decock C, Jacobs K, Maraite H. Ophiostoma arduennense sp. nov. (Ophiostomatales, Ascomycota) from Fagus sylvatica in southern Belgium. Mycol Res. 2006;110:801–10.CrossRefPubMedGoogle Scholar
  10. 10.
    Romón P, Zhou X, Iturrondobeitia JC, Wingfield MJ, Goldarazena A. Ophiostoma species (Ascomycetes: Ophiostomatales) associated with bark beetles (Coleoptera: Scolytinae) colonizing Pinus radiata in northern Spain. Can J Microbiol. 2007;53:756–67.CrossRefPubMedGoogle Scholar
  11. 11.
    Linnakoski R, De Beer ZW, Rousi M, Niemelä P, Pappinen A, Wingfeld MJ. Fungi including Ophiostoma karelicum sp. nov., associated with Scolytus ratzeburgi infesting birch in Finland and Russia. Mycol Res. 2008;112:1475–88.CrossRefPubMedGoogle Scholar
  12. 12.
    Geldenhuis MM, Roux J, Montenegro F, De Beer ZW, Wingfield MJ, Wingfield BD. Identification and pathogenicity of Graphium and Pesotum species from machete wounds on Schizolobium parahybum in Ecuador. Fungal Divers. 2004;15:135–49.Google Scholar
  13. 13.
    Kamgan Nkuekam G, Jacobs K, De Beer ZW, Wingfield MJ, Roux J. Ceratocystis and Ophiostoma species including three new taxa, associated with wounds on native South African trees. Fungal Divers. 2008;29:37–59.Google Scholar
  14. 14.
    Kamgan Nkuekam G, Jacobs K, De Beer ZW, Wingfield MJ, Roux J. Pesotum australi sp. nov. and Ophiostoma quercus associated with Acacia mearnsii trees in Australia and Uganda, respectively. Australas Plant Pathol. 2008;37:406–16.CrossRefGoogle Scholar
  15. 15.
    Grobbelaar J, Aghayeva D, De Beer ZW, Bloomer P, Wingfield M, Wingfield B. Delimitation of Ophiostoma quercus and its synonyms using multiple gene phylogenies. Mycol Prog. 2009;8:221–36.CrossRefGoogle Scholar
  16. 16.
    De Beer ZW, Wingfield BD, Wingfield MJ. The occurrence of Ophiostoma piliferum-like fungi on pulpwood chips and other wood sources in South Africa. S A J Sci. 2003;99:34–6.Google Scholar
  17. 17.
    De Beer ZW, Wingfield BD, Wingfield MJ. The Ophiostoma piceae complex in the southern hemisphere: a phylogenetic study. Mycol Res. 2003;107:469–76.CrossRefPubMedGoogle Scholar
  18. 18.
    Kim G-H, Kim J-J, Lim YW, Breuil C. Ophiostomatoid fungi isolated from Pinus radiata logs imported from New Zealand to Korea. Can J Bot. 2005;83:272–8.CrossRefGoogle Scholar
  19. 19.
    Kim G-H, Kim J-J, Breuil C. Sap-staining fungi from logs and boards of two commercially important pines in Korea. Holzforschung. 2007;61:333–6.CrossRefGoogle Scholar
  20. 20.
    Thwaites JM, Farrell RL, Hata K, Carter P, Lausberg M. Sapstain fungi on Pinus radiata logs—from New Zealand forest to export in Japan. J Wood Sci. 2004;50:459–65.CrossRefGoogle Scholar
  21. 21.
    Thwaites JM, Farrell RL, Duncan SM, Reay SD, Blanchette RA, Hadar E, et al. Survey of potential sapstain fungi on Pinus radiata in New Zealand. N Z J Bot. 2005;43:653–63.Google Scholar
  22. 22.
    Grobbelaar JW, Barnes I, Cortinas M-N, Bloomer P, Wingfeld MJ, Wingfeld BD. Development and characterization of polymorphic markers for the sap-stain fungus Ophiostoma quercus. Mol Ecol Resour. 2008;9:399–401.CrossRefGoogle Scholar
  23. 23.
    Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes––application to the identification of mycorrhizae and rusts. Mol Ecol. 1993;2:113–8.CrossRefPubMedGoogle Scholar
  24. 24.
    White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and application. San Diego: Academic Press; 1990. p. 315–22.Google Scholar
  25. 25.
    O’Donnell K, Cigelnik E. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol Phylogenet Evol. 1997;7:103–16.CrossRefPubMedGoogle Scholar
  26. 26.
    Glass NL, Donaldson GC. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous Ascomycetes. Appl Environ Microbiol. 1995;61:1323–30.PubMedGoogle Scholar
  27. 27.
    Jacobs K, Bergdahl DR, Wingfield MJ, Halik S, Seifert KA, Bright DE, et al. Leptographium wingfieldii introduced into North America and found associated with exotic Tomicus piniperda and native bark beetles. Mycol Res. 2004;108:411–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Katoh K, Toh H. Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform. 2008;9:286–98.CrossRefPubMedGoogle Scholar
  29. 29.
    Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evol. 1985;39:783–91.CrossRefGoogle Scholar
  30. 30.
    Posada D, Crandall KA. MODELTEST: testing the model of DNA substitution. Bioinformatics. 1998;14:817–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–4.CrossRefPubMedGoogle Scholar
  32. 32.
    Upadhyay HP. A monograph of Ceratocystis and Ceratocystiopsis. Athens: University of Georgia Press; 1981.Google Scholar
  33. 33.
    Kowalski T, Butin H. Taxonomie bekannter und neuer Ceratocystis-Arten an Eiche (Quercus robur L). J Phytopathol. 1989;124:236–48.Google Scholar
  34. 34.
    Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winker K, et al. Cryptic species as a window on diversity and conservation. Trends Ecol Evol. 2007;22:148–55.CrossRefPubMedGoogle Scholar
  35. 35.
    Noor MAF, Feder JL. Speciation genetics: evolving approaches. Nat Rev Gen. 2006;7:851–61.CrossRefGoogle Scholar
  36. 36.
    Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, et al. Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol. 2000;31:21–32.CrossRefPubMedGoogle Scholar
  37. 37.
    Engelbrecht CJB, Harrington TC. Intersterility, morphology and taxonomy of Ceratocystis fimbriata on sweet potato, cacao and sycamore. Mycologia. 2005;97:57–69.CrossRefPubMedGoogle Scholar
  38. 38.
    Kohn LM. Mechanisms of fungal speciation. Ann Rev Phytopathol. 2005;43:279–308.CrossRefGoogle Scholar
  39. 39.
    Brasier CM. The genetic system as a fungal taxonomic tool: gene flow, molecular variation and sibling species in the ‘Ophiostoma piceae––O. ulmi’ complex and its taxonomic and ecological significance. In: Wingfield MJ, Seifert KA, Webber J, editors. Ceratocystis and Ophiostoma: taxonomy, ecology and pathogenicity. St. Paul, Minnesota: APS Press; 1993. pp. 77–92.Google Scholar
  40. 40.
    Harrington TC, McNew DL. Partial interfertility among the Ceratocystis species on conifers. Fungal Genet Biol. 1998;25:44–53.CrossRefPubMedGoogle Scholar
  41. 41.
    Harrington TC, McNew D, Steimel J, Hofstra D, Farrell R. Phylogeny and taxonomy of the Ophiostoma piceae complex and the Dutch Elm disease fungi. Mycologia. 2001;93:111–36.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Joha W. Grobbelaar
    • 1
  • Z. Wilhelm de Beer
    • 2
    Email author
  • Paulette Bloomer
    • 1
  • Michael J. Wingfield
    • 1
  • Brenda D. Wingfield
    • 1
  1. 1.Department of GeneticsUniversity of PretoriaPretoriaSouth Africa
  2. 2.Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoriaSouth Africa

Personalised recommendations